基于改进 BP 神经网络的高速公路边坡稳定性分析

苏俊霖1,杨建明1,罗辉2,刘茜1

(1.南华大学 土木工程学院,湖南 衡阳 421001;2.长沙理工大学 交通运输工程学院,湖南 长沙 410004)

摘要:通过引入动量项和自适应学习率对传统 BP 神经网络预测模型进行改进,建立改进 BP 神经网络边坡稳定性预测公式,并将其应用于湖南安化某高速公路边坡工程,将其预测结果与传统 BP 神经网络预测结果和实际安全系数进行比较,分析边坡的稳定性并提出针对性的建议。

关键词:公路;边坡;稳定性分析;BP神经网络

中图分类号:U416.1 文献标志码:A

文章编号:1671-2668(2018)01-0090-04

边坡工程地质条件随机性很大,设计计算中岩 土体参数和计算理论也存在一定的经验性,传统的 定量计算方法考虑因素也很有限。因此,有学者提 出采用 BP 神经网络预测边坡的稳定性。神经网络 具有自组织、自适应和自学习能力,特别是在处理多 因素问题、不准确和模糊信息方面优势较大。郭钟 群等运用 BP 神经网络进行边坡稳定性分析,但由 于标准 BP 算法的学习率为确定值,学习步长小,网 络收敛速度很慢。陈建宏等采用 PCA 和 BP 神经 网络分析了影响边坡稳定性的主成分。程纬华等运 用 BP 神经网络进行边坡稳定性分析,在权值修正 公式上引入动量项进行改进,但未考虑学习率的自 适应性,对学习率的选取有待改进。该文在权值修 正公式中引入动量项,同时采用自适应学习率对 BP 神经网络进行改进,分析安化某高速公路挖方边坡 的稳定性。

1 改进 BP 神经网络原理

BP 神经网络也称为误差反向传播神经网络,是 一种多层前馈型网络,由输入层、隐含层、输出层组

成(见图 1),其中任意一个由 3 层组合而成的网络, 只要有足够的隐含单元,就可以达到所需精度要求。 当输入节点数为 n、输出节点数为 m 时,构成 n 个 自变量到 m 个因变量的函数映射关系。因边坡稳 定性影响因素多,且各因素与稳定性系数为一种非 线性关系,按照非线性优化方式处理问题的 BP 神 经网络优势明显。但由于标准 BP 算法在数学角度 看是非线性优化,势必存在局部极小值问题,在实际 工程运用时需加以改进。标准 BP 算法在修正权值 w(k)时没有考虑梯度变化方向,单纯按照 k 时刻负 梯度方向进行,导致过程收敛速度慢,出现震荡、发 散。为此,引入动量项进行改进。该改进方法的实 质就是权值调整量在当前变化量的基础上加上一个 正比于前一个权值调整量的量,加快模型收敛速度。 公式如下:

$$w(k) = w(k-1) + (1-\alpha)\eta(k-1)d(k-1) + \alpha[w(k-1) - w(k-2)]$$
(1)

式中:w(k)、w(k-1)、w(k-2)分别为k、k-1、k-2 时刻对应的权系数或权向量; α 为动量因子, α =mc, $0 \le \alpha < 1$; $\eta(k-1)$ 为k-1时刻的学习率,其 值为[0,1];d(k-1)为k-1时刻的负梯度。

权值调整过程中学习率为一常数。η值的大小 直接影响网络的收敛性能,其值太小则收敛很慢,太 大则可能导致网络模型震荡或发散。为此,通过自 适应学习率进行改进。学习率的改进公式如下:

$$\eta(k) = \begin{cases} 0.75 \eta(k-1), E(k) > E(k-1) \\ 1.05 \eta(k-1), E(k) < E(k-1) \\ \eta(k-1), E(k) = E(k-1) \end{cases}$$
(2)

式中:*E*(*k*)为*k*时刻的均方误差,*E*(*k*-1)为*k*-1 时刻的均方误差,误差变大时减小学习率,反之则增 大学习率。 网络构造样本集输入为 *x*₁,*x*₂,*x*₃,…,*x*_{n-1},样 本集输出为 *y*₁,*y*₂,…,*y*_{m-1},对应的映射关系为:

 $f(x_{1}, x_{2}, x_{3}, \cdots, x_{n-1}) = Y(y_{1}, y_{2}, \cdots, y_{m-1})$ (3) $Y(y_{n}, y_{n+1}, \cdots, y_{n+k}) = f(x_{n}, x_{n+1}, \cdots, x_{n+k})$

(4)

给定新的 x_n 时,输出的 y_n 即为预测值。改进 后的 BP 神经网络依旧保留原来的优势,可通过有 导师学习来逼近任意的非线性映射。在用于实际边 坡稳定性分析时,将边坡稳定性影响参数与边坡稳 定性通过构造的 BP 神经网络寻找映射关系。

2 工程应用

2.1 工程概况

湖南安化某高速公路边坡所在场地属构造剥蚀 堆积地貌、垄岗丘陵与河谷地形,是山前丘陵与洢水 河河谷的过渡地带,地形起伏大。公路左侧主要为 填方,右侧以切方为主。该文分析右侧切方边坡的 稳定性。右侧切方边坡的岩土体主要由粉质黏土和 风化岩构成,风化岩属泥盆系中统棋子桥组,以泥灰 岩、泥质灰岩为主,夹有页岩,局部有滑坡堆积的碎 石土和泥石流沉积的碎块石土。岩土体较脆弱,现 场踏勘发现裂缝较明显,上部土体有向下滑动趋势。 在开挖过程中,受地质条件和降雨的影响,其中下方 未设置抗滑桩部分区域出现局部不稳现象。

2.2 建立预测模型

因该边坡的土性与文献[10]中边坡土性较接 近,以该文献中38个边坡实例作为样本,选取32个 用于训练,其中稳定边坡和破坏边坡均有选取,其他 6个样本用来检测网络模型的可靠性。样本中边坡 状态:1表示稳定,0表示破坏。输入向量为容重、粘 聚力、内摩擦角、边坡角、边坡高及孔隙压力比,输出 向量为安全系数、边坡状态。

隐含层节点数取 11,构造 6-11-2 BP 网络模型。激活函数选用 S(sigmoid)函数,传递函数选用 tansig,训练函数选用 traingdx。传统 BP 神经网络中学习率取 0.05;改进神经网络中动量因子 d 取 0.9,输入层至隐含层的初始学习率取 0.05,隐含层 至输出层的初始学习率取 0.22。

表1为部分训练样本。对训练样本进行归一化, 因孔隙压力比的取值为[0,1],其影响甚微,不作处 理。归一化后样本数据见表2。表3为检测样本。

表1 部分训练样本

样本编号	重度/(kN•m ⁻³)	粘聚力/kPa	内摩擦角/(°)	边坡角/(°)	边坡高/m	孔隙压力比	安全系数	边坡状态
1	22.4	10.0	35.0	45	10	0.40	0.90	0
2	20.0	20.0	36.0	45	50	0.50	0.83	0
3	20.0	0.1	36.0	45	50	0.25	0.79	0
4	20.0	0.1	36.0	45	50	0.50	0.67	0
5	22.0	0.0	40.0	33	8	0.35	1.45	1
6	24.0	0.0	40.0	33	8	0.30	1.58	1
7	20.0	0.0	24.5	20	8	0.35	1.37	1
8	18.0	0.0	30.0	20	8	0.30	2.05	1

表 2 归一化处理后的训练样本

样本编号	重度	粘聚力	内摩擦角	边坡角	边坡高	孔隙压力比	安全系数	边坡状态
1	0.077 7	-0.705 9	0.750 0	0.724 1	-0.974 8	0.400 0	0.900 0	0.000 0
2	-0.170 9	-0.411 8	0.800 0	0.724 1	-0.8067	0.500 0	0.830 0	0.000 0
3	-0.170 9	-0.997 1	0.800 0	0.724 1	-0.8067	0.250 0	0.790 0	0.000 0
4	-0.170 9	-0.997 1	0.800 0	0.724 1	-0.8067	0.500 0	0.670 0	0.000 0
5	0.036 3	-1.0000	1.000 0	-0.1034	-0.9832	0.350 0	1.450 0	1.000 0
6	0.243 5	-1.0000	1.000 0	-0.1034	-0.9832	0.300 0	1.580 0	1.000 0
7	-0.171 0	-1.0000	0.225 0	-1.0000	-0.9832	0.350 0	1.370 0	1.000 0

运

续表 2									
样本编号	重度	粘聚力	内摩擦角	边坡角	边坡高	孔隙压力比	安全系数	边坡状态	
8	-0.378 2	-1.0000	0.500 0	-1.0000	-0.9832	0.300 0	2.050 0	1.000 0	
9	0.554 4	0.176 5	0.750 0	0.586 2	0.747 9	0.250 0	1.150 0	0.000 0	
10	0.554 4	0.470 6	1.000 0	0.517 2	0.693 3	0.250 0	1.440 0	1.000 0	
11	0.554 4	0.029 4	0.750 0	0.517 2	0.491 6	0.250 0	1.270 0	1.000 0	
12	0.554 4	0.102 9	0.750 0	0.227 6	0.327 7	0.250 0	1.240 0	1.000 0	
13	0.554 4	-0.058 8	0.650 0	0.558 6	0.247 9	0.250 0	1.160 0	0.000 0	
14	0.554 4	-0.058 8	0.650 0	0.531 0	0.797 5	0.250 0	1.300 0	1.000 0	
15	0.585 5	-0.5882	0.550 0	0.448 3	-0.5546	0.250 0	1.249 0	1.000 0	
16	0.585 5	-0.073 5	0.485 0	0.448 3	-0.4496	0.250 0	1.245 0	1.000 0	
17	0.585 5	-0.7059	0.950 0	0.379 3	0.958 0	0.250 0	1.434 0	1.000 0	
18	0.347 2	0.352 9	0.750 0	0.862 1	0.844 5	0.250 0	1.280 0	1.000 0	
19	0.347 2	0.352 9	0.750 0	0.655 2	0.810 9	0.250 0	1.370 0	1.000 0	
20	-0.3264	-0.2647	-1.000 0	-0.310 3	-0.9916	0.250 0	1.090 0	0.000 0	
22	0.077 7	-0.7059	0.750 0	-0.310 3	-0.9748	0.250 0	2.000 0	1.000 0	
23	-0.025 9	-0.7059	0.517 0	-0.310 3	-0.9328	0.250 0	1.700 0	1.000 0	
24	0.036 3	-0.411 8	0.800 0	0.724 1	-0.8067	0.250 0	0.890 0	0.000 0	
25	-1.0000	-1.0000	0.500 0	0.034 5	-1.0000	0.250 0	1.460 0	1.000 0	
26	-1.0000	-1.0000	0.500 0	0.724 1	-0.983 2	0.250 0	0.800 0	0.000 0	
27	-1.0000	-1.0000	0.500 0	0.034 5	-1.0000	0.250 0	1.440 0	1.000 0	
28	-1.0000	1.000 0	0.850 0	1.000 0	-0.1744	0.250 0	1.200 0	0.000 0	
29	-0.170 9	-0.411 8	0.800 0	0.724 1	-0.8067	0.250 0	0.960 0	0.000 0	
30	0.554 4	0.176 5	0.750 0	0.869 0	0.210 1	0.250 0	1.150 0	0.000 0	
31	0.347 2	0.617 6	0.800 0	0.689 7	0.239 5	0.250 0	1.550 0	1.000 0	
32	0.585 5	-0.705 9	0.950 0	0.379 3	1.000 0	0.250 0	1.445 0	1.000 0	

表 3 检测样本

样本编号	重度/(kN•m ⁻³)	粘聚力/kPa	内摩擦角/(°)	边坡角/(°)	坡高∕m	孔隙压力比	安全系数	边坡状态
33	27.3	26.0	1	50	92.0	0.25	1.246	1
34	22.0	10.0	36	45	50.0	0.25	1.020	0
35	26.0	50.0	45	30	200.0	0.25	1.200	0
36	25.0	46.0	35	46	432.0	0.25	1.230	1
37	27.3	16.8	28	50	90.5	0.25	1.252	1
38	27.3	10.0	39	41	511.0	0.25	1.470	1

2.3 改进 BP 神经网络与未改进网络对比

用未改进的 BP 神经网络与改进后的 BP 神经 网络分别对表 2 中数据进行训练,对表 3 的数据进 行检测。结果显示:未改进的 BP 神经网络需 9 970 步才能收敛,改进后的 BP 神经网络仅经过 518 步 训练即收敛,收敛更快,说明引入动量项和自适应学 习率可大大节省边坡稳定性预测时间。两种模型的 预测结果与实际安全系数对比见图 2。

图 2 边坡安全系数对比

由图 2 可知:未改进的 BP 神经网络误差大,改进后的 BP 神经网络预测安全系数更接近实际值, 准确率更高,说明引入动量项和自适应学习率可提 高预测模型的准确度。

将该改进模型预测方法用于安化某高速公路右 侧挖方边坡稳定性预测,通过分析该边坡的实际土 体参数,得出安全系数为1.1203,状态为破坏。预 测结果与边坡的实际情况相吻合,说明该模型用于 预测边坡稳定性可行,对实际工程具有借鉴价值。 边坡预测稳定性系数小于边坡安全系数1.2,建议对 该边坡采用抗滑桩或抗滑挡墙进行治理,防止边坡 破坏危及道路施工和运营安全。

3 结论

(1) 边坡工程稳定性预测分析中,采用引入动 量项和自适应学习率的改进 BP 神经网络的收敛速 度明显加快,可节省时间,且其预测误差更小,准确 度更高。

(2)改进预测模型用于边坡稳定性预测可行, 可为工程设计和施工提供参考,便于对边坡及时进行处理。

(上接第 89 页)

相关要求。

参考文献:

- [1] 何敏.级配碎石基层沥青路面受力特性研究[D].西安: 长安大学,2009.
- [2] 李君.高等级公路柔性基层级配碎石的研究[D].大连: 大连理工大学,2004.
- C P Valkering, F D R Stapel, J Li jzenga. The shell pavement design method on a personal computer[A].
 Proceedings of 7th International Conference on Asphalt Pavement[C].1992.
- [4] 王修山.级配碎石沥青路面材料与结构特性研究[D]. 西安:长安大学,2010.
- [5] 钟梦武,吴善周.级配碎石回弹模量试验方法研究[J].

(3)安化某高速公路边坡的预测稳定系数为1.12,小于边坡安全系数 1.2,建议采用抗滑桩或抗 滑挡墙及时对边坡进行治理。

参考文献:

- [1] 栾婷婷,谢振华,张雪冬.露天矿山高陡边坡稳定性分 析及滑坡预警技术[J].中国安全生产科学技术,2013, 9(4).
- [2] 王晓东,陈守龙.路基边坡稳定性有限元数值分析[J]. 安徽建筑,2011,18(1).
- [3] 郭钟群,余金勇,彭道强,等.基于 BP 神经网络的边坡 稳定性分析[J].铜业工程,2013(6).
- [4] 陈建宏,郑荣凯,陈浩.基于 PCA 和 BP 神经网络边坡 稳定性分析[J].中国安全生产科学技术,2014,10(5).
- [5] 程纬华,乔登攀,张磊,等.BP 神经网络在露天矿边坡 稳定性分析中的应用[J].矿冶,2012,21(2).
- [6] 王小川,史峰,郁磊,等.MATLAB 神经网络 43 个案例 分析[M].北京:北京航空航天大学出版社,2011.
- [7] 张月琴,刘翔,孙先洋.一种改进的 BP 神经网络算法与应用[J].计算机技术与发展,2012,22(8).
- [8] 刘莉,刘强,刘大鹏.引入动量项的变步长 BP 神经网络 预测算法[J].探测与控制学报,2015,37(5).
- [9] 张华节,李璀.学习速率连续变化的 BP 神经网络算法 [J].四川兵工学报,2011,32(4).
- [10] 付义祥,刘世凯,刘大鹏.RBF 神经网络在边坡岩体稳 定性中的预测研究[J].武汉理工大学学报:交通科学 与工程版,2003,27(2).
- [11] JTG E40-2007,公路土工试验规程[S].

收稿日期:2017-05-16

公路,2007(6).

- [6] JTG D50-2006,公路沥青路面设计规范[S].
- [7] JTG E60-2008,公路路基路面现场测试规程[S].
- [8] 柳音.级配碎石柔性基层性能试验研究[D].重庆:重庆 交通大学,2008.
- [9] JTG E40-2007,公路土工试验规程[S].
- [10] 陈艳琼.级配碎石柔性基层路用性能控制[J].福建建 材,2012(11).
- [11] 郝丕琳.辽宁省普通公路沥青路面级配碎石基层的路 用性能研究[D].沈阳:沈阳建筑大学,2011.
- [12] 周卫峰,李彦伟,张秀丽,等.基于振动成型的级配碎 石路用性能及设计标准[J].重庆交通大学学报:自然 科学版,2009,28(3).

收稿日期:2017-05-29