Highways & Automotive Applications

拱肋倾角对蝶形拱桥弯曲与自振的影响分析*

李唐

(长沙理工大学 土木与建筑学院, 湖南 长沙 410004)

摘要:运用 MIDAS/Civil 软件建立钢一混组合结构中承式蝶形拱桥有限元分析模型,分析不同拱肋倾角时蝶形拱桥拱顶、1/4 拱肋处的弯矩和位移及桥梁结构的自振特性。结果表明,拱肋倾角的变化对蝶形拱桥拱肋弯矩和位移的影响较大,对桥梁结构自振频率的影响小。

关键词: 桥梁;蝶形拱桥;拱肋倾角;弯曲;自振特性

中图分类号:U441

文献标志码:A

文章编号:1671-2668(2018)03-0127-02

蝶形拱桥由桥面向外倾斜的拱肋构成,内侧拱 肋通常为主拱肋,主拱肋外另设副拱肋,主副拱肋通 过圆钢管或工字钢连接,通过拉索和主副拱肋之间 的连接拉杆共同维持空间体系的稳定。对于蝶形拱 桥的异形桥梁结构,许多学者从不同角度进行了研 究:霍学晋等分析了各种非线性因素对蝶形拱桥外 倾拱和三类索非线性行为的影响;牛辉等对空间曲 线蝶形拱桥顶推施工进行了多尺度仿真分析;赵中 岩对蝶形钢管砼拱桥的拱座进行了局部受力分析; 蒲黔辉等以太原市南中环桥主桥为工程背景,对大 跨度蝶形钢管砼拱桥两类稳定安全系数进行了分 析;唐仁伟从拱肋抗弯刚度和倾角两方面分析了蝶 形拱桥的稳定性;陈淮等探讨了拱肋倾角变化对斜 靠式拱桥稳定性的影响。但鲜见对蝶形拱桥拱肋倾 角变化对结构力学特性影响的研究。该文结合实际 工程,应用有限元方法对不同倾角的中承式钢一混 组合式蝶形拱桥拱肋的力学性能进行对比分析,为 蝶形拱桥设计和施工提供参考。

1 有限元模型的建立

以合肥市某高速公路车行天桥为背景,该桥为钢一混组合结构蝶形拱桥,与铅垂面呈 45°倾角,跨径 58 m,桥台间距 63.72 m,桥面宽度 10 m,矢跨比为 1:2.828;拱肋平面内的矢高为 20.506 m,竖直平面内的矢高为 14.5 m。主梁与拱肋用 11 根吊杆连接。

根据该桥的基本结构参数建立中承式蝶形钢管 拱桥有限元模型,全桥共有节点 1 199 个、各类结构 单元 1 264 个(见图 1)。

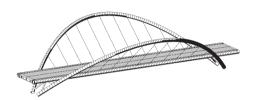


图 1 蝶形拱桥有限元模型

2 拱肋倾角对蝶形拱桥拱肋弯矩的影响

设定两种工况,工况 1 为恒载+活载,工况 2 为恒载+活载+支座沉降+整体升温,分析不同拱肋倾角时蝶形拱桥拱肋拱顶和 1/4 拱肋处的弯矩,结果见表 1 、表 2 。

表 1 不同拱肋倾角下拱顶弯矩

₩ ₩ ₩ Æ //°\	拱顶弯矩/(kN・m)			
拱肋倾角/(°)	工况 1	工况 2		
35	-800.9	-861.1		
40	-650.5	-708.1		
45	-536.1	-592.2		
50	-429.6	-485.4		
55	-328.7	-384.6		

表 2 不同拱肋倾角下 1/4 拱肋处弯矩

₩₩ <i>₩₩</i>	1/4 拱肋处弯矩/(kN・m)			
拱肋倾角/(°)	工况 1	工况 2		
35	658.9	676.2		
40	581.2	595.6		
45	583.9	596.1		
50	612.5	622.9		
55	767.3	776.1		

^{*}基金项目: 国家级大学生创新创业训练计划资助项目(201610536016)

从表 1 可看出:两种工况下拱肋拱顶弯矩变化 趋势相近,随着拱肋倾角的增加,蝶形拱桥拱顶弯矩 呈近乎线性状减小,变化速率较快。表明拱肋倾角 变化对蝶形拱桥拱肋拱顶截面弯矩的影响较大。

从表 2 可看出:两种工况下 1/4 拱肋处弯矩变 化趋势相近,随着拱肋倾角的增加,1/4 拱肋处弯矩 呈凹状曲线变化。拱肋倾角为 40°~50°时,1/4 拱 肋处弯矩较小;拱肋倾角减小或增大,1/4 拱肋处弯 矩均迅速增加。因此,在蝶形拱桥设计时应避免将 拱肋倾角设计得偏小或偏大,以免拱肋失稳。

3 拱肋倾角对蝶形拱桥拱肋位移的影响

上述两种工况下不同倾角蝶形拱桥拱肋拱顶截 面和 1/4 拱肋处的位移分别见表 3、表 4。

表 3 不同拱肋倾角下拱顶位移

拱肋倾	拱顶位移/mm		拱肋倾	拱顶位移/mm	
角/(°)	工况 1	工况 2	角/(°)	工况 1	工况 2
35	361	377	50	240	247
40	322	335	55	209	214
45	283	298			

表 4 不同拱肋倾角下 1/4 拱肋处位移

拱肋倾 角/(°) -	1/4 拱肋处 位移/mm		拱肋倾 	1/4 拱肋处 位移/mm	
	工况 1	工况 2	用八八	工况 1	工况 2
35	113	132	50	56	74
40	94	113	55	41	58
45	76	94			

从表 3 可看出:两种工况下拱肋拱顶位移变化 趋势相近,均随着拱角的增大而不断减小。适当增 加拱肋倾角可减小蝶形拱桥拱肋拱顶处位移。

从表 4 可看出:两种工况下 1/4 拱肋处位移变化趋势相近。相比于拱顶位移,1/4 拱肋处的位移小得多,说明拱肋倾角变化对拱桥 1/4 拱肋处变形的影响不大。

4 拱肋倾角对蝶形拱桥自振特性的影响

拱肋倾角变化时蝶形拱桥前 10 阶自振频率见表 5。从表 5 可看出:随着蝶形拱桥拱肋倾角的增大,桥梁结构的前三阶自振频率变化不明显,其变化趋势近似一条水平线;其他七阶自振频率略有增加,但幅度较小。说明拱肋倾角对结构自振特性的影响

较小,可忽略。

表 5 不同拱肋倾角蝶形拱桥的自振频率

	不同拱肋倾角下的自振频率/kHz				
	35°	40°	45°	50°	55°
1	1.638	1.633	1.631	1.632	1.635
2	1.649	1.651	1.655	1.656	1.654
3	2.951	2.982	3.011	3.037	3.057
4	3.181	3.206	30239	3.278	3.324
5	4.353	4.453	4.406	4.344	4.287
6	4.499	4.474	4.548	4.631	4.695
7	4.542	4.797	4.945	5.032	5.094
8	5.283	5.518	5.526	5.413	5.274
9	5.515	5.605	5.561	5.545	5.577
10	5.875	5.715	6.046	6.498	6.891

5 结论

- (1) 随着拱肋倾角的增大,蝶形拱桥拱顶弯矩近似呈线性递减,1/4 拱肋处弯矩呈凹形曲线变化。蝶形拱桥结构设计时拱肋倾角不宜过大,以免拱肋失稳。
- (2) 蝶形拱桥拱顶和 1/4 拱肋处位移均随着拱肋倾角的增加而逐渐减小,且 1/4 拱肋处的位移变化小于拱顶。蝶形拱桥结构设计中可通过增加拱肋倾角来减小拱顶变形。
- (3) 拱肋倾角变化对蝶形拱桥结构自振特性的 影响较小。

参考文献:

- [1] 霍学晋,韩立中.蝶形拱桥的非线性行为分析[J].公路 交通科技,2013,30(9).
- [2] 牛辉,汪劲丰,张仪萍,等.空间曲线蝶形拱桥顶推施工的多尺度模拟分析[J].浙江大学学报:工学版,2013,
- [3] 赵中岩. 蝶形钢管混凝土拱桥的拱座局部受力分析 [D].成都:西南交通大学,2011.
- [4] 蒲黔辉,霍学晋,杨永清.基于统一理论的蝶形拱桥空间稳定性分析[J].西南交通大学学报,2010,42(6).
- [5] 唐仁伟.蝴蝶拱桥的稳定性及动力特性分析[D].衡阳: 西华大学,2013.
- [6] 陈淮,孙应桃.斜靠式拱桥拱肋倾角变化对稳定性能的 影响[J].铁道科学与工程学报,2009,6(1).
- [7] 肖勇刚,丁炜.钢一混组合结构蝶形拱桥索力优化[J]. 长沙理工大学学报:自然科学版 2015,12(3).

收稿日期:2017-07-04