高填方拱涵结构力学影响因素及减载措施数值分析

范东,王东明

(广州市高速公路有限公司,广东广州 510315)

摘要:既有燃气管道斜交并下穿拟建高速公路高填方路基,为防止燃气管道受高填方重载破 坏,对燃气管道增设拱涵保护结构,通过在箱涵底部及拱圈内部埋设监测设备进行受力监测及有 限元软件计算仿真,分析影响拱涵结构的力学因素,探讨减载措施。结果表明,拱涵结构起到了良 好的保护效果;增加拱的厚度和基坑开挖深度、减小拱的跨度及净高,可提高其工程保护效果;采 用柔性填料减载方法,箱涵跨中底部土层竖向应力减小约10 kPa。

关键词: 涵洞;高填方路基;拱涵;燃气管道;减载措施

中图分类号:U449.1 文献标志码:A

城市周边高等级公路往往与市政管道线路交 错,为保证公路和管道的安全运作,需修筑大量高填 方涵洞。Marston A.基于滑动面的极限平衡理论提 出了高填方涵洞垂直土压力计算公式;朱振德等通 过理论分析进一步补充了马斯顿理论,并提出了简 化计算公式:曾国熙在考虑纵向不均匀沉降引起的 土拱效应的前提下,提出了垂直土压力计算修正公 式;杨锡武等根据模型试验分析高填方涵洞顶部土 压力与填土高度变化的相互关系,考虑到高填方涵 洞的成拱效应,采用加筋桥的减载方法;马强等在涵 洞一填土相互作用机制的基础上,分析了加筋桥减 载法的效果;任达成等基于二维有限差分模型研究 了涵顶铺设柔性填料和地基处理两种减载方法;刘 静等研究涵顶铺设柔性材料的减载措施,并推导了 涵洞垂直土压力简化公式;白冰等通过试验测试提 出泡沫塑料可应用于道路减载。以往研究多集中于 高填方涵洞受力分析及防护措施,缺乏现场监测数 据的支持,且研究对象多为中空涵洞,以拱涵的应力 状态或变形为控制指标。根据燃气管道设计要求, 涵洞与管道之间填充松砂,其结构形式更复杂。该 文依托实际工程,结合现场监测和数值模拟对高填 方拱涵结构受力特点进行分析,以管道下方土层的 竖向应力和拱体内力为主要控制指标,对高填方路 基下穿管道的拱涵结构力学影响因素及减载措施进 行研究,为高填方构筑物设计和施工提供依据。

1 现场试验方案

燃气管道直径 914 mm,原箱涵保护结构采用 C30 钢筋砼,上下底板和左右侧壁厚 250 mm,箱涵 **文章编号:**1671-2668(2018)04-0134-05

整体宽度 2.5 m,高度 2.02 m,箱涵底部设一道 100 mm 厚 C15 砼垫层,保护箱涵的钢筋砼盖板至原公路地坪高差为 2 m,原箱涵与管道空隙以中密填中砂。在燃气管道所在位置,公路填方路基的填土最大高度约 10 m,加上原保护箱涵钢筋砼盖板上方 2 m 覆土,原保护箱涵在竖向将承受总覆土厚度约 12 m 的荷载。

增设的拱涵保护结构包含 C15 砼垫层、钢筋砼 变截面边墙和钢筋砼拱结构,拱厚度 h 为 0.5 m,跨 度 B 为 3.5 m,净高 W 为 1.0 m,基坑开挖深度 H 为 5.0 m。原保护箱涵位于拱涵保护结构中央,原 箱涵砼盖板顶面与砼拱间的间隙密填中砂。监测仪 器土压力盒分别埋设在拱涵边墙位置和原箱涵底部 土层,沿底部深度 0.65、1.15、1.55 m 分层水平布置。 拱涵尺寸及监测仪器布设方案见图 1。

图 1 拱涵尺寸及监测仪器布设方案

2 拱涵结构力学影响因素数值分析

2.1 数值模型

采用有限元软件 ABAQUS 进行二维平面应变 模型数值分析。土层从上至下依次为 10 m 厚人工 填土、10 m 厚粉质黏土、10 m 厚全风化花岗岩。土体和结构物采用二维实体模型,结构物材料采用线 弹性属性,土体材料采用弹塑性属性,采用 Mohr-Coulomb 强度破坏准则。采用 CPE4R 进行网格划分(见图 2),数值模型中各材料参数见表 1。

图 2 拱涵结构模型网格划分 表 1 拱涵结构模型材料参数

土体和结	弹性模	泊松	密度/	粘聚力/	内摩擦
构物材料	量/MPa	比	$(kg \cdot m^{-3})$	kPa	角/(゜)
粉质黏土	6	0.25	1 900	18	20
填砂	10	0.22	2 000	—	30
全风化花岗岩	60	0.20	2 600	_	_
人工填土1	15	0.25	1 800	15	10
人工填土 2	30	0.25	1 800	15	10
柔性土1	15	0.25	1 800	15	10
柔性土 2	25	0.25	1 800	15	10
片石土层	100	0.20	2 200	—	—

2.2 数值模型与实测数据对比分析

图 3 为拱厚度 h 为 0.50 m 时箱涵底部土层竖 向应力分布数值分析结果。由图 3 可知: \pm 1.75 m 范围为箱涵区域,在跨中处竖向应力达到最大,并沿 深度方向逐渐增大,箱涵底部表层土层竖向应力约 250 kPa; $-4 \sim -2$ 和 2~4 m 范围为边墙区域, ± 层竖向应力较大,与箱涵底部相差约 80 kPa,表明 拱涵结构对管道起到了较好的保护作用;边墙与箱 涵之间土层的应力较小,表明该区域土层受填土附 加荷载的影响较小。

图 4 为现场竖向应力监测结果。由图 4 可知: 箱涵底部表层土层竖向应力在拱涵两侧分布较对称,符合现实情况,呈现跨中区域竖向应力达到较大 值并沿深度方向逐渐增大的趋势;边墙与箱涵之间 土层的应力值较小。与上述数值分析结果较吻合, 说明数值模型基本符合现场涵洞的实际情况。

2.3 力学影响因素数值分析

根据技术要求,燃气管道原保护箱涵的地基土 应力是模型数值分析的主要力学控制指标。分析发

图 4 现场竖向应力监测结果

现,在填土状态、砼拱和边墙力学参数等基本不变的 条件下,拱的厚度h、跨度B和净高W及边墙基底 至原保护箱涵基底之间高差 ΔH 的变化对原保护 箱涵底板下方土层竖向应力可能产生较明显的影 响。事实上, ΔH 决定保护方案基坑开挖深度H, 与施工安全条件有关。

2.3.1 拱厚度的影响

依据拱涵体系保护结构承受竖向土层荷载的大 小,选取拱厚度分别为 0.40、0.45、0.50、0.55 和 0.60 m 进行模拟分析。图 5 为不同拱厚度下箱涵底部 跨中土层竖向应力,其中理论值表示无拱涵结构对 应的应力值。由图 5 可知:改变拱的厚度并不影响 箱涵底部土层应力分布趋势,随着拱厚度的增加,箱 涵底部土层竖向应力减小;与无拱涵结构对应的应

图 5 不同拱厚度下箱涵底部跨中土层竖向应力对比

力值相比,增设拱涵结构使管道的竖向荷载降低 10 ~30 kPa。

在岩土工程中,岩土体、砼结构对屈服和张拉破 坏更敏感。为快速确定模型中最危险区域的分布, 选取等效应力 S_{mises}和最大主应力 S_{max}作为应力状 态评价指标。图 6 为不同拱厚度下拱结构 S_{mises}和 S_{max}最大值,图 7 为拱结构和箱涵盖板弯矩。由图 6、图 7 可知:1)随着拱厚度的增加,拱体 S_{mises}和 S_{max}最大值显著减小,增加拱厚度可在一定程度上 降低拱体破坏风险,对结构有利。2)拱结构和箱涵 盖板弯矩最大值均出现在跨中,随着拱厚度的增加, 拱结构跨中弯矩显著增大,箱涵盖板跨中弯矩小幅 度减小;5 种厚度下,拱结构跨中弯矩均远大于箱涵 盖板跨中弯矩。

综上,增加拱的厚度,可降低箱涵底部土层竖向 应力,对边墙底部土层的影响较小,对工程保护效果 有利,且拱体 S_{mises}和 S_{max}最大值显著减小,拱体结 构更安全。

2.3.2 基坑开挖深度的影响

从原地面起,选择基坑开挖深度 H 分别为 4.8、 4.9、5.0、5.1、5.2、5.3、5.4 和 5.5 m 进行数值分析。 图 8 为不同基坑开挖深度下箱涵底部表面土层竖向 应力。由图 8 可知:随着开挖深度的增加,箱涵底部 土层竖向应力逐渐减小,开挖深度较小时应力沿水 平方向变化较小,开挖深度较大时应力由中间向两 边减小。这种变化是由于随着开挖深度的增加,从 边墙至箱涵的传力路线延长,应力在传导过程中逐 渐消散。

图 8 不同基坑开挖深度下箱涵底部表面土层竖向应力对比

图 9 为不同基坑开挖深度下拱结构 S_{mises}和 S_{max}最大值,图 10 为拱结构和箱涵盖板跨中弯矩。 由图 9、图 10 可知:随着基坑开挖深度的加大,拱结构 S_{mises}和 S_{max}最大值显著增大,对拱结构不利;拱 结构跨中弯矩也显著增大,箱涵盖板跨中弯矩则略 微减小。

综上,基坑开挖深度越大,箱涵底部土层竖向应

2.3.3 拱跨度和净高的影响

改变拱的跨度 B 和净高 W 进行数值分析,分 别取 B=3.5 m, W=1.00 m, B=3.5 m, W=1.15 m, B=3.5 m, W=1.30 m, B=4.0 m, W=1.00 m, B=4.0 m, W=1.30 m, B=4.0 m, W=1.30 m, B=4.5 m, W=1.30 m, B=4.5 m, W=1.15 m, B=4.5 m, W=1.15 m, B=4.5 m, W=1.30 m, 9 种组合。图 11 为不同拱跨度和净 高组合下箱涵底部表面土层竖向应力。由图 11 可 知:拱的跨度对箱涵的影响较大,随着跨度的增大, 箱涵底部土层竖向应力增大,应力最大值的区域也 增大;拱的净高对箱涵的影响较小。

土层竖向应力分布

表 2 为不同跨度和净高组合下拱结构 S_{mises} 和 S_{max} 最大值,表 3 为拱结构和箱涵盖板弯矩。由表 2、表 3 可知:1)随着拱跨度的增加,拱结构的 S_{mises} 和 S_{max} 最大值均大幅增加;拱净高对 S_{mises} 和 S_{max} 最大值均大幅增加;拱净高对 S_{mises} 和 S_{max} 最大值的影响较小。2)随着拱跨度的增大,拱体跨中弯矩增大;随着拱净高的增加,拱体跨中弯矩减小; 箱涵盖板跨中弯矩较小,变化幅度较小。

综上,随着拱跨度的增大,箱涵底部土层竖向应 力增大,拱结构 S_{mises}和 S_{max}最大值及拱体跨中弯矩 均增大;拱的净高对箱涵及拱的内力影响较小。

3 柔性填料减载方法

在砼拱两端的梯形区域换填片石土,片石土层 相比普通填土模量大,强度高,不仅可承受更大的剪 切应力,对拱体也能起到侧向约束作用,从而提高拱 体的作用;同时,在拱涵上方一定区域填充柔性土

表 2 不同拱跨度和净高组合下拱结构 S_{mises} 和 S_{max} 最大值对比

拱跨度	净高	S_{mises} 最大值/	S_{max} 最大值/
B/m	W/m	MPa	MPa
3.5	1.00	4.81	4.56
3.5	1.15	4.83	4.50
3.5	1.30	4.56	4.12
4.0	1.00	5.61	5.30
4.0	1.15	5.40	5.01
4.0	1.30	5.51	5.20
4.5	1.00	6.33	6.34
4.5	1.15	6.22	6.02
4.5	1.30	5.93	5.79

表 3 不同拱跨度和净高组合下拱结构和箱涵盖板弯矩对比

拱跨度 B/m	净高 W/m	弯矩/(kN・m)		
		拱结构跨中	箱涵盖板跨中	
3.5	1.00	228.0	34.1	
3.5	1.15	224.9	33.1	
3.5	1.30	207.3	32.4	
4.0	1.00	265.7	40.0	
4.0	1.15	251.9	38.9	
4.0	1.30	255.0	38.0	
4.5	1.00	307.6	44.5	
4.5	1.15	295.6	42.9	
4.5	1.30	273.3	41.9	

层,使涵顶土体压缩模量小于涵洞两侧土体的压缩 模量,在涵洞内外土柱产生沉降差,形成"土拱",从 而降低涵顶的土体竖向压力。减载布置见图 12,减 载前后箱涵底部表面竖向应力对比见图 13,应力和 强度对比见表 4,弯矩对比见表 5。

由图 13、表 4、表 5 可知:1) 减载后箱涵底部土

图 13 减载前后箱涵底部表面竖向应力对比

表 4 减载前后箱涵拱体、边墙应力和强度对比 MPa

时间 位置	$S_{ m mises}$	$S_{ m mises}$	$S_{ m max}$	$S_{ m max}$	
	迎且	最大值	强度	最大值	强度
运业品	拱体	4.81	9 01	4.56	2 01
侧软刖	边墙	3.14	2.01	1.87	2.01
减载后	拱体	2.83	0.01	2.64	2 01
	边墙	2.38	2.81	1.42	2.01

表 5 减载前后箱涵拱结构和箱涵盖板跨中弯矩对比

时间	弯矩/(kN・m)		
	拱结构跨中	箱涵盖板跨中	
减载前	228.3	34.7	
减载后	194.2	34.4	

层竖向应力比减载前降低约 10 kPa,最大值为 240 kPa左右,小于 GB 50007-2002《建筑地基基础 设计规范》地基承载力修正值 256 kPa。2) 减载后 拱体 S_{mises}和 S_{max}最大值降低约 2 MPa,接近对应强 度值;边墙 S_{mises}和 S_{max}最大值均降低,且均在对应 强度值范围内。3)减载后拱结构跨中弯矩降低 30 kN·m。该柔性填料的减载效果显著。

4 结论

(1) 增设拱涵结构,管道底部土层竖向应力大 幅度减小,箱涵跨中弯矩远小于拱体跨中弯矩,对燃 气管道和箱涵起到了良好保护作用。

(上接第50页)

- [11] Nihan Akyelken. Green logistics: improving the environmental sustainability of logistics[J].Transport Reviews,2012,31.
- [12] Tolga Bektaş, Gilbert Laporte. The pollution-routing problem[J].Transportation Research Part B: Method-

(2) 影响高填方拱涵结构的主要力学因素包括 拱的厚度、跨度、净高及基坑开挖深度。随着拱厚度 和基坑开挖深度的增大、拱跨度的减小,工程保护效 果增强,其中拱跨度的影响最显著,基坑开挖深度次 之,拱厚度的影响最小。

(3) 采用柔性填料减载方法,与未减载时对比, 箱涵跨中底部土层竖向应力减小约10kPa,拱结构 的应力和跨中弯矩均较大幅度减小,起到了良好减 载效果。

参考文献:

- [1] Marston A, Anderso O. The theory of loads on pipesin ditches and tests of cement and clay drain tile and sewerpipe [R]. Iowa Engineering Experiment Station, 1913.
- [2] 朱振德.基础工程学[M].上海:大东书局,1950.
- [3] 曾国熙.土埧下涵管竖向土压力的计算[J].浙江大学学 报:工学版,1960(1).
- [4] 杨锡武.山区公路高填方涵洞土压力理论及加筋减载 研究[D].重庆:重庆大学,2004.
- [5] 杨锡武,张永兴.山区公路高填方涵洞加筋桥减载方法 及其设计理论研究[J].岩石力学与工程学报,2005,24 (9)
- [6] 马强,郑俊杰,张军,等.高填方涵洞减载机制与数值分 析[A].中国水利水电岩土力学与工程学术讨论会[C]. 2010.
- [7] 任达成,汪海博.高填方预制盖板涵减载措施及其效果 研究[J].土工基础,2013,27(1).
- [8] 刘静,谢永利.高填土路堤下涵洞受力的数值仿真[A]. 中国岩石力学与工程学会第七次学术大会[C].2002.
- [9] 刘静.高填路堤涵洞土压力理论及减荷技术研究[D]. 西安:长安大学,2004.
- [10] 白冰,陆土强.聚苯乙烯泡沫塑料的测试及其在土工 中的应用[J].岩土工程学报,1993(2).
- 「11] GB 50007-2002,建筑地基基础设计规范[S].
- 「12〕 魏银红.高填涵洞垂直土压力分布规律的数值模拟分 析[J].路基工程,2007(3).

收稿日期:2018-03-29

ological,2011,45(8).

> [13] Wang Y Y, Yang S X, University S. Material selection in design of green package based on concept of life cycle design[J].Packaging Engineering, 2015(9).

收稿日期:2018-03-09