钢一混组合梁斜拉桥施工过程静力特性研究*

刘耕¹,邢丙东¹,赵庆伟¹,王洪云¹,关文学¹,杨则英²,曲永业² (1.山东省交通工程监理咨询有限公司,山东济南 250101;2.山东大学,山东济南 250100)

摘要:随着施工的进行,斜拉桥的结构体系与荷载都会发生变化,在不同施工阶段,结构受力和变形各有特点。为研究钢一混组合梁斜拉桥施工过程静力特性,文中以济齐黄河公路大桥为工程背景,利用 MIDAS 进行有限元建模,分别对斜拉桥的主梁、索塔及斜拉索进行分析,重点分析主梁中钢梁和砼桥面板在施工中的受力特性。

关键词:桥梁;钢一混组合梁斜拉桥;静力特性;施工过程

中图分类号:U448.27

文献标志码:A

文章编号:1671-2668(2020)02-0122-05

斜拉桥的内力一直是桥梁设计中十分重要的问题,很大程度上反映斜拉桥结构的安全性和合理性。对斜拉桥进行仿真计算,分析施工中各部分的内力和变形,对保证施工过程中及成桥状态下各结构的安全非常重要。对于钢一混组合梁结构,尤其需注意各施工阶段中桥面板的应力状态,防止其发生破坏。该文以济齐黄河公路大桥为工程背景,利用MIDAS分析钢一混组合梁斜拉桥施工过程中的静力特性。

1 施工过程模拟

斜拉桥的施工顺序对索力控制有一定影响,采用 MIDAS 建模分析时需尽可能按照实际施工顺序进 行。济齐黄河公路大桥模型的主要施工程序见表 1。

表 1 主桥施工步骤

施工步骤	施工项目
1	基础、主塔、共用墩、辅助墩施工
2	安装 0 * 、1 * 梁并第一次张拉 S1、M1 索
3	安装 0 * 、1 * 段桥面板
4	第二次张拉 S1、M1 索
5	0 # 、1 # 桥面板上组装吊机及铺设吊机轨道
6	安装 2 # 梁并第一次张拉 S2、M2 索
7	安装 1 # 、2 # 梁段桥面板
8	第二次张拉 S2、M2 索
9	移动吊机到下一梁段
10	重复步骤 2~8,安装 2 *~10 * 梁段,张拉 S2~
	S10、M2~M10 索
11	安装 11# 梁并第一次张拉 S11、M11 索

续表1

施工步骤	施工项目
12	安装 10 "、11 " 梁段桥面板
13	第二次张拉 S11、M11 索
14	在 S10~S11 梁端间安装永久压重,移动吊机 到下一梁段
15	重复步骤 11~14,安装 12*~15*梁段
16	安装 16 # 梁并第一次张拉 S16、M16 索
17	安装 15 * 、16 * 梁段桥面板
18	第二次张拉 S16、M16 索
19	在 S15~S16 梁端间安装永久压重,拆除悬拼 吊机,安装合龙段吊机
20	搭设共用墩处临时支架,安装 18 * 梁及 18 * 梁段桥面板
21	安装边跨合龙段吊机
22	安装 17#(边跨合龙段)梁及 17# 梁桥面板
23	拆除边跨合龙段挂篮及共用墩临时支架
24	安装 S16 索至边跨压重
25	张拉边跨桥面板纵向预应力钢束
26	吊装跨中梁段梁
27	吊装桥面板
28	拆除合龙吊机,张拉跨中桥面板纵向预应力 钢束,拆除桥塔处临时固结
29	安装辅助墩处永久支座
30	安装第二次永久压重
31	第三次张拉 S16、S15、S14 索
32	桥面铺装、安装护栏、灯座等附属设施

^{*}基金项目: 齐鲁交通集团科技项目

2 施工阶段分析

斜拉桥的结构体系及荷载随施工的进行会发生变化,各部分在不同施工阶段的变形和受力都不相同,各有特点。主要针对主梁、索塔及斜拉索,分析钢一混组合梁在施工过程中的静力特性。

2.1 主梁的静力特性

分别对钢梁和桥面板的静力特性进行分析。

2.1.1 钢梁应力

离散出组合梁中钢梁部分,对其应力进行分析。 各施工阶段钢梁的最大应力见表 2,成桥状态下应力 见图 1。

表 2 施工阶段钢梁最大应力

MPa

施工阶段	最大拉应力	最大压应力
塔索梁1	0.00	1.62
塔索梁 2	1.21	8.83
塔索梁3	15.77	12.94
塔索梁 4	36.94	15.58
塔索梁 5	54.50	19.17
塔索梁 6	71.43	26.24
塔索梁7	78.25	36.37
塔索梁 8	81.30	48.26
塔索梁 9	79.40	43.30
塔索梁 10	92.22	57.85
塔索梁 11	102.69	75.38
塔索梁 12	113.40	84.67
塔索梁 13	123.74	110.83
塔索梁 14	128.73	130.84
塔索梁 15	128.80	147.08
塔索梁 16	125.67	165.04
塔索梁 17	125.67	165.06
塔索梁 18	125.67	165.04
张拉边跨预应力钢束	125.77	175.38
中跨合龙	124.64	176.18
张拉边跨预应力钢束	120.40	176.22
二次压重	120.36	172.40
桥面铺装	113.58	179.79



图 1 成桥状态下钢梁应力(单位:Pa)

由表 2、图 1 可知:1)施工阶段钢梁的最大拉应 力为 128.8 MPa,发生在 15[#] 梁段,满足钢材的容许 应力。同一位置在不同施工阶段的应力分布不同, 主要是在悬臂施工过程中,吊机等临时荷载的装卸 会对钢梁产生一定影响。2)成桥状态下钢梁应力 分布与各施工阶段钢梁的应力分布有很大区别,不 仅数值大小不同,而且施工过程中钢梁可能受拉,成 桥状态下可能受压。主要是因为成桥状态下结构体 系和施工过程有很大区别。

2.1.2 桥面板应力

砼的抗拉能力较弱,施工过程中需重点关注砼 桥面板所受的拉应力。各施工阶段桥面板的最大应 力见表 3,成桥状态下应力见图 2。

表 3 桥面板各施工阶段的最大应力 MPa

7FC 171 FE 12	× 11 110 — 171 1× 113 4×	,, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
施工阶段	最大拉应力	最大压应力
塔索梁 1	0.65	1.52
塔索梁 2	1.15	10.54
塔索梁 3	1.07	10.68
塔索梁 4	1.10	11.22
塔索梁 5	1.14	11.91
塔索梁 6	1.46	12.82
塔索梁 7	1.44	13.65
塔索梁 8	1.27	14.33
塔索梁 9	1.31	15.08
塔索梁 10	1.43	15.69
塔索梁 11	1.50	16.28
塔索梁 12	1.72	16.97
塔索梁 13	1.89	17.61
塔索梁 14	2.21	18.22
塔索梁 15	2.39	18.80
塔索梁 16	2.77	19.37
塔索梁 17	2.77	19.37
塔索梁 18	2.77	19.37
张拉边跨预应力钢束	1.70	19.37
中跨合龙	1.67	19.39
张拉边跨预应力钢束	1.65	19.52
二次压重	1.72	19.53
桥面铺装	1.99	20.92

图 2 成桥状态下桥面板应力(单位:Pa)

由表 3、图 2 可知:1)大部分施工阶段桥面板的最大拉应力满足抗拉强度设计要求,仅有小部分桥面板的最大拉应力超过设计值。推测是模拟计算中出现误差导致突变,和位移计算结果进行比对后证明结构安全。2)施工过程中,几乎所有桥面板都出现了拉应力。如果桥面板在施工过程中出现较多受拉开裂现象,将对桥梁整体结构产生一定影响。因此,需重点关注桥面板在施工过程中的应力控制。3)桥面板在施工阶段和成桥状态的应力分布有很大区别,成桥状态下桥面板全部受压,这与其受力特性有很大关系。成桥状态下桥面板的最大压应力为15.2 MPa,符合抗压强度设计要求,结构安全。

2.1.3 主梁的弯矩和变形

成桥状态下钢梁和桥面板的弯矩分别见图 3、图 4,主梁变形见图 5。

图 3 成桥状态下钢梁弯矩(单位:N·m)

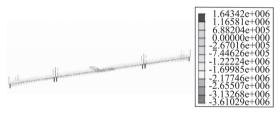


图 4 成桥状态下桥面板弯矩(单位:N·m)

图 5 成桥状态下主梁线形(单位:m)

由图 3 可知:在共用墩、辅助墩和跨中部分,钢梁呈现正弯矩,其余大部分为正弯矩。这和成桥状态下主梁变形特点相吻合。成桥状态下钢梁最大正弯矩为 20 278.1 kN·m,最大负弯矩为 15 641.8 kN·m,符合斜拉桥设计对弯矩的要求。

由图 4 可知:在共用墩、辅助墩、桥塔部分,桥面板呈现较大的负弯矩和正弯矩,其余大部分弯矩分布较均匀。成桥状态下桥面板最大正弯矩为

1 643.4 kN·m,最大负弯矩为 3 610.3 kN·m,符合斜拉桥设计对弯矩的要求。

由图 5 可知:成桥状态下主梁变形与钢梁和桥面板弯矩的分布规律基本一致,主梁在跨中和辅助墩有较大变形,竖向最大位移为 41.0 cm。

2.2 索塔的静力特性

索塔是斜拉桥受力的主要部分。对施工完成和成桥阶段索塔的轴力、弯矩、应力进行对比分析。

2.2.1 索塔轴力

施工完成和成桥阶段索塔的轴力分别见图 6、图 7。

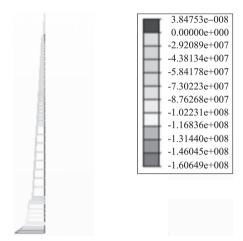


图 6 施工完成阶段索塔轴力(单位:N)

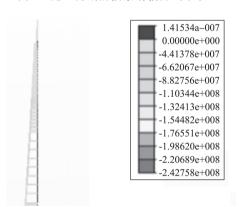


图 7 成桥状态下索塔轴力(单位:N)

由图 6、图 7 可知:1)施工完成阶段,索塔的最大轴力发生在塔底,为 160 649 kN。主要是因为施工完成阶段索塔只受自重的影响,越靠近塔顶,轴力越小。2) 成桥状态下索塔轴力比施工完成阶段的轴力大,尤其是在索塔的上塔柱。主要是因为索力的影响,拉索主要锚固在上塔柱,成桥状态下索力的分力会对索塔轴力产生一定影响。

2.2.2 索塔弯矩和变形

施工完成和成桥阶段索塔弯矩和变形见图 8~11。

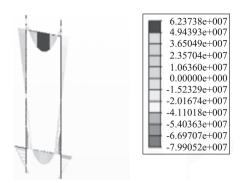


图 8 施工完成阶段索塔弯矩(单位:N·m)

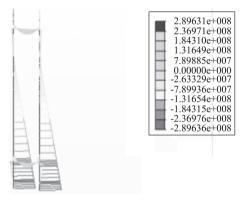


图 9 成桥状态下索塔弯矩(单位:N·m)

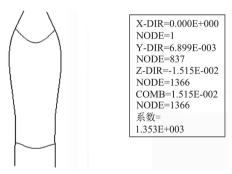


图 10 施工完成阶段索塔线形(单位:m)

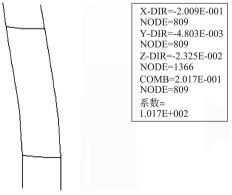


图 11 成桥状态下索塔线形(单位:m)

由图 8~11 可知:施工完成阶段索塔弯矩远小于成桥状态下弯矩。成桥状态下索塔最大弯矩发生 在承台,为 289 636 kN·m,弯矩的分布特点与索塔 的变形对应。索塔弯矩主要集中在中下塔柱,这与 实际索塔的形状符合。

2.2.3 索塔应力

施工完成和成桥阶段索塔应力分别见图 12、图 13。

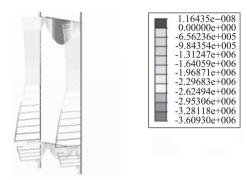


图 12 施工完成阶段索塔应力(单位:Pa)

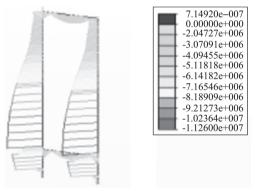


图 13 成桥状态下索塔应力(单位:Pa)

由图 12、图 13 可知:施工完成阶段索塔最大应 力为 3.6 MPa,远小于成桥状态下最大应力 11.3 MPa,但两阶段索塔应力分布基本一致。成桥 状态下,中塔柱和下塔柱应力分布较均匀,主要是由 于其采用变截面设计,从上到下截面面接越来越大。 虽然上塔柱受到的索力分力从上到下越来越大,但 由于上塔柱采用变截面设计,其应力分布也较均匀。 索塔应力分布均匀,有利于运营时索塔的保持。

2.3 斜拉索的静力特性

斜拉索呈空间扇形分布,两侧双索面布置,每个索面在边跨和中跨各布置 16 条拉索,采用 7 种不同规格的拉索。对成桥阶段斜拉索索力和施工阶段5[#]、15[#]拉索索力进行分析,结果分别见表 4、图 14、图 15。

由表 4 可知:成桥阶段最大索力发生在中跨 16 段,为 5 564.3 kN;成桥阶段斜拉索索力由桥塔向两侧逐渐增大,有必要采用多种规格斜拉索;同一对拉索,中跨的拉索索力大于边跨的拉索索力,索力的水

平分力在中跨也大于边跨,故索塔会向中跨部分偏移,与索塔变形结果一致。

表 4	成桥阶段斜拉索索力	kN
-----	-----------	----

斜拉索号	索力	斜拉索号	索力
S16	5 422.3	M16	5 564.3
S15	5 317.0	M15	5 143.5
S14	5 325.1	M14	5 538.2
S13	5 353.5	M13	5 469.1
S12	4 924.2	M12	5 427.9
S11	4 874.7	M11	4 930.0
S10	4 361.5	M10	4 902.1
S9	4 297.6	M9	4 855.1
S8	3 635.6	M8	4 120.4
S7	3 618.5	M7	3 598.1
S6	3 168.2	M6	3 580.5
S 5	3 160.5	M5	3 138.1
S4	2 775.5	M4	3 064.0
S3	2 680.7	M3	2 919.1
S2	2 008.1	M2	2 173.4
S1	1 765.2	M1	1 912.7
		.,	

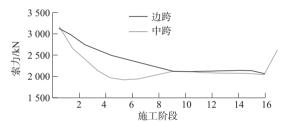


图 14 施工阶段 5 # 斜拉索索力

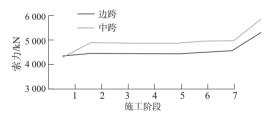


图 15 施工阶段 15 # 斜拉索索力

由图 14、图 15 可知:在施工开始的阶段,5[#]、 15[#]拉索索力有较大变化;随着施工的进行,边跨和 中跨的拉索索力趋于平稳;在桥面铺装阶段,由于荷 载的施加,索力又发生较大变化。

3 结论

- (1) 桥面板在各施工阶段和成桥状态的应力分布有很大区别,尤其要注意桥面板在施工过程中的应力控制。
- (2) 索塔采用变截面设计有利于索塔应力的均匀分布。索塔的变形主要集中在塔顶,施工时尤其要注意对塔顶位移的监控。
- (3) 施工过程中要重点监测索力的变化,若需调整索力,需检测主梁的应力变化。

参考文献:

- [1] 孙才志,赵雷,陈文元.大跨度结合梁斜拉桥施工阶段 静力分析[J].四川建筑科学研究,2012,3(6).
- [2] 万良,孙建渊.大跨度部分斜拉桥最大单悬臂阶段几何 非线性影响分析[J].佳木斯大学学报,2014,32(4).
- [3] 李胜伟.钢一混组合梁斜拉桥施工过程受力性能及非 线性影响分析[D].石家庄:石家庄铁道大学,2017.
- [4] 肖勇刚,刘智.温度效应对独塔钢混梁斜拉桥的静力特性影响[J].公路与汽运,2009(2).
- [5] 刘伟.江津观音岩叠合梁斜拉桥施工过程静力稳定性 分析[J].四川建筑,2010(1).
- [6] 刘航.双塔组合梁斜拉桥施工全过程静力分析[D].成都:西南交通大学,2015.
- [7] 罗鹏.异形斜拉桥施工控制与力学行为研究[D].西安: 长安大学,2014.

收稿日期:2019-05-10

(上接第 46 页)

流预测[J].交通科技与经济,2018,20(6).

- [12] 王川,张宝文.基于小波分析与隐马尔科夫模型的短时交通流预测[J].交通节能与环保,2018,14(1).
- [13] 毕猛,王安迪,徐剑,等.基于离散马尔科夫链的数据库 用户异常行为检测[J].沈阳工业大学学报,2018,1(1).
- [14] 卢才武,赵海,江松,等.基于新陈代谢-GM(1,N)马 尔科夫的轨道交通客运量预测方法[J].公路交通科 技,2018,35(12).
- [15] 葛详友,宋伟奇,宾哲桂.基于马尔科夫链的隐写算法设计[J],广西民族大学学报:自然科学版,2017,23(4).

- [16] 余绪金,许俊.一种基于有向图的高速公路多义性路径贝叶斯识别方法[J].公路交通科技,2018,35(11).
- [17] 韦学武.高速公路交通流随机性和行程时间可靠性研究[D].长春:吉林大学,2016.
- [18] 连军艳.EM 算法及其改进在混合模型参数估计中的应用研究[D].西安:长安大学,2006.
- [19] 田秀娟,于德新,邢雪,等.交叉口短时流量 CEEMDAN-PE-OSELM 预测模型[J].哈尔滨工业大学学报, 2018,50(3).

收稿日期:2019-10-09