五跨先简支后连续梁桥的延性抗震设计

易祥军

(海南省交通规划勘察设计研究院,海南海口 570206)

摘要:以工程实例为背景,采用基于弹塑性动力时程分析法的延性抗震设计方法,选取双折线 滞回模型进行分析,给出结构内力响应、塑性较滞回特性、桥墩位移安全系数和结构残余变形,通 过对比弹塑性动力时程与线性动力时程地震响应,分析塑性铰的耗能性能及对结构的有利影响, 并进行延性构件(桥墩)位移安全系数评价,验证结构的安全性。

关键词:桥梁;五跨先简支后连续梁桥;延性抗震设计;弹塑性动力时程分析法

中图分类号:U442.5 文献标志码:A

地震激起的惯性力较大,对于普通结构,若单纯 依靠强度来抵抗地震,会造成巨大的材料浪费。目前,大都将"小震不坏,大震不倒"的二阶段设计方法 作为基本设防思想,即中小震作用下结构处于弹性 状态,以强度破坏为准则;强震作用下结构可发生一 定塑性变形和有限损伤,以延性破坏为准则。弹塑 性动力时程分析法是随着强震记录增多和计算机技 术的广泛应用发展起来的,该方法从选定合适的地 震波出发,通过有限元动力模型建立地震振动方程, 通过逐步积分对方程进行求解,计算地震动过程中 每一时刻结构的响应,从而分析地震作用下结构弹 性和非弹性阶段的内力、位移变化。

文章编号:1671-2668(2020)06-0101-05

1 地震波的选取和调整

地震动输入的不确定性是支配结构地震响应不 确定性的重要因素。地震动的主要特性可通过幅 值、频率和持续时间来描述。

根据特征周期与场地特征周期比较相近的原则 选取3组地震波进行调整,以与E2地震作用下规 范反应谱相适应为目标。调整前的地震波见表1。

表 1 调整前的地震波特性

此電池に且	地震加速度峰值/	有效峰值加速度/	有效峰值速度/	特征周	持续时	设计加速度峰值/	场地特征	
地辰仮に水	$[\times 9.8(m \cdot s^{-2})]$	$[\times 9.8(\mathbf{m} \cdot \mathbf{s}^{-2})]$	$(m \cdot s^{-1})$	期/s	间/s	$[\times 9.8(m \cdot s^{-2})]$	周期/s	
1940,EI Centro	0.257	0.200	0.220	0.520	52 72	0.51	0.25	
Site,270 Deg	0.337	0.290	0.239	0.329	55.72	0.51	0.55	
1971,San	0.971	0.919	0.159	0 467	61 00	0 51	0.25	
Fernando,159 Deg	0.271	0.218	0.138 0.407		01.00	0.31	0.55	
1971,San	0.215	0.262	0.004	0.220	61 04	0 51	0.25	
Fernando,69 Deg	0.010	0.203	0.094	0.229	01.04	0.01	0.30	

调整后的地震波保证有效峰值加速度和特征周 期与 E2 地震作用下规范反应谱相同。限于篇幅, 不具体描述。地震波1调整前后加速度反应谱曲线 见图1。

2 双折线滞回模型

弹塑性动力时程法分析中,实际地震荷载为反 复荷载,通过定义滞回曲线的变形规律来反映。鲍 雷T.等把结构或构件的滞回延性定义为在抗力始 终没有明显下降的情况下,结构或构件所能承受的 反复弹塑性变形循环的能力。此外,钢筋砼结构的 特点是卸载后刚度低于初始刚度,称为刚度退化,且 刚度变形与循环荷载的履历有关。根据刚度退化的

102

特点采用 Clough 双折线计算模型,初期加载时效应 点在 2 条不同斜率的骨架曲线上移动(见图 2),卸 载刚度按式(1)计算。根据式(1),卸载刚度随着屈 服后变形的进展而逐渐减小。

$$K_{\rm R} = K_{\rm o} \left| \frac{D_{\rm y}}{D_{\rm m}} \right|^{\beta} \leqslant K_{\rm o} \tag{1}$$

式中: K_R 为卸载刚度; K_o 为弹性刚度; D_y 为卸载开 始时相应区域的屈服变形; D_m 为卸载开始时相应区 域的最大变形,对于还未发生屈服的区域取屈服时 的变形; β 为确定卸载刚度的经验系数,一般取 -0.4_o

图 2 Clough 模型的滞回曲线

3 结构性能分析

3.1 工程概况

南渡江大桥位于海南省澄迈县永发镇,跨越南 渡江。上部结构采用7m×(5×30)m先简支后连 续预应力砼箱梁,梁高1.6m;采用柱式桥墩,直径 均为1.6m;桩直径为1.8m。桥型布置见图3。

采用 MIDAS/Civil 有限元软件对桥梁进行分析,采用梁格模型建模。取7联中墩高最矮的一联 作为算例,墩高见表2。墩柱纵筋配筋率为0.98% (40¢25)、配箍率为0.63%(¢16@80)。等效塑性铰 长度按JTG/T B02-01-2008《公路桥梁抗震设计

细则》计算。计算模型见图 4。

表 2 计算模型桥墩高度

墩台号	墩高/m	墩台号	墩高/m
1	8.0	4	6.0
2	7.0	5	5.5
3	7.0	6	5.5
1,	2" 3"	4" 5"	6"

图 4 南渡江大桥连续箱梁桥计算模型

3.2 结构内力响应分析

顺桥向和横桥向塑性铰的区别在于屈服特性不同:顺桥向塑性铰轴力恒定,屈服强度一定;横桥向 塑性铰需考虑轴力变化,用屈服面描述屈服强度。 二者并无本质区别,由于篇幅所限,仅沿顺桥向输入 地震波进行分析,线性时程分析和弹塑性时程分析 主要内力对比见表 3。

由表 3 可知:地震波 1、2、3 作用下,考虑塑性铰 延性后,墩底弯矩分别平均折减 40.7%、35.6%、 36.9%,墩顶剪力分别平均折减 35.0%、19.6%、 28.3%。当地震波特性不同时,塑性铰耗能对弯矩 折减程度较稳定,对剪力折减程度差别较大。即使

表 3 线性时程和弹塑性时程分析内力对比

地震波 墩台号	樹厶旦	墩底最大弯矩/(kN・m)		亦伝北社/1/	墩顶最大	、剪力/kN	黄力长泽/11/
	线性时程	弹塑性时程	- 弓丸扪砜/ /0 -	线性时程	弹塑性时程	努力玑硕/ /0	
	1	6 284.1	3 755.2	40.2	799.3	630.5	21.1
	2	6 022.8	4 111.1	31.7	712.2	513.0	28.0
	3	5 916.2	3 839.6	35.1	695.7	467.5	32.8
1	4	7 471.6	3 580.5	52.1	996.6	504.1	49.4
	5	8 516.6	4 145.8	51.3	1 205.4	589.8	51.1
	6	5 572.5	3 698.9	33.6	858.6	622.1	27.5

此意动	扇石日	墩底最大弯	墩底最大弯矩/(kN・m)		墩顶最ナ	大剪力/kN	おちちば / 0/
地辰仮	慰百万	线性时程	弹塑性时程	- 弓丸切颅/ /0 -	线性时程	弹塑性时程	剪刀玑诚/ /0
	1	5 760.4	3 487.7	39.5	608.0	478.5	21.3
	2	5 124.7	3 636.3	29.0	536.5	477.3	11.0
2	3	4 669.0	3 386.3	27.5	497.7	488.6	1.8
2	4	4 633.6	3 340.8	27.9	529.4	442.4	16.4
	5	4 845.6	3 564.7	26.4	612.4	581.6	5.0
	6	9 847.5	3 596.1	63.5	1 425.0	538.7	62.2
	1	5 298.4	3 426.3	35.3	616.5	429.9	30.3
	2	6 017.8	3 630.6	39.7	576.0	404.3	29.8
0	3	6 194.6	3 380.3	45.4	584.5	391.3	33.1
3	4	5 659.2	3 369.2	40.5	601.0	429.1	28.6
	5	4 610.0	3 589.8	22.1	566.7	489.3	13.7
	6	5 490.0	3 373.4	38.6	769.4	503.7	34.5

续表 3

折减程度并不一定,但始终存在一个规律,即塑性铰可以调整结构内力分布,使各墩原本差别较大的内力变得均匀。如对于地震波1、2、3,线性时程分析 得到的各墩底弯矩分别与平均值最大相差28.4%、 69.4%、11.9%,而弹塑性时程分析得到的墩底弯矩 分别与平均值最大相差7.5%、4.6%、4.9%,原因在 于塑性铰屈服后位移显著增大的同时,荷载增加缓 慢,使其余未屈服的桥墩分担了荷载。说明塑性铰 的调节作用很显著,这一规律对于桥墩统一设计非 常有利。

3.3 塑性铰滞回特性

图 5~7 为不同地震波作用下 1[#]、6[#] 墩墩底弯 矩一转角滞回曲线。

由图 5~7 可知:墩底弯矩一转角滞回曲线外轮 廓围成一定的面积,体现了塑性铰的耗能能力,面积 越大,吸收能力越强。然而计算模型仍然不能反映 结构是否发生塑性破坏,即塑性铰变形是否超过其 延性能力,还需另行判断。该桥各墩墩底塑性铰延 性能力与需求见表 4。

由表4可知:各塑性铰延性能力有较大富余。

图 7 地震波 3 作用下典型塑性铰滞回曲线

表 4 南渡江大桥延性能力与需求对比

	裁面田右蛙州			地震波1作用下延性		地震波 2 作用下延性			地震波 3 作用下延性			
墩台	低	叫凹 17 IC		能ナ	与需求		能ナ	与需求		能力]与需求	
号	屈服曲率/	极限曲率/	曲率延	最大曲率/	曲率延	能力/	最大曲率/	曲率延	能力/	最大曲率/	曲率延	能力/
	$(10^{-3} \mathrm{m}^{-1})$	$(10^{-3} \mathrm{m}^{-1})$	性能力	$(10^{-3} \mathrm{m}^{-1})$	性需求	需求	$(10^{-3} \mathrm{m}^{-1})$	性需求	需求	$(10^{-3} \mathrm{m}^{-1})$	性需求	需求
1	2.56	52.78	20.64	7.76	3.03	6.81	11.34	4.43	4.65	5.43	2.12	9.72
2	2.55	51.60	20.26	7.56	2.97	6.82	6.71	2.64	7.69	12.26	4.81	4.21
3	2.56	53.12	20.76	10.61	4.15	5.01	6.37	2.49	8.34	10.53	4.11	5.04
4	2.54	52.30	20.58	11.86	4.67	4.41	8.07	3.18	6.48	12.76	5.02	4.10
5	2.55	51.87	20.34	13.24	5.19	3.92	10.14	3.98	5.12	5.12	2.01	10.13
6	2.54	52.17	20.54	11.30	4.45	4.62	15.35	6.04	3.40	13.12	5.17	3.98

地震波1作用下各墩能力/需求指标平均为5.3,地 震波2作用下为5.9,地震波3作用下为6.2,各桥墩 在不同地震波作用下性能变化较大,说明时程分析 结果很大程度上依赖地震波选取。

3.4 结构位移响应分析

3.4.1 桥墩位移安全系数

图 8、图 9 分别为该桥 3[#] 墩塑性铰区转角时程 曲线和墩顶位移时程曲线。根据《公路桥梁抗震设 计细则》进行检算,转角位移和水平位移检算结果分 别见表 5、表 6。

由图 8、图 9、表 5、表 6 可知:相对于规范值,该 桥转角位移和水平位移均较小。塑性铰区转角位移 安全系数(θ_u/θ_p)为 5.25~14.88,墩顶水平位移安 全系数(Δ_u/Δ_d)为 3.68~7.58,结构整体上安全。 3.4.2 结构残余变形分析

从结构位移变化来看,最终质点振动的平衡位 置将偏离坐标轴,即产生残余变形,表明塑性变形使 结构卸载后不能恢复到原始状态。图 10 为地震作 用后结构典型残余变形。

产生残余变形是延性设计的一个主要缺陷,其 大小对结构的震后修复有很大影响。为能从时程曲 线中读取有效的残余变形,在地震波数据最后添加 一定长度的零加速度,以地震后结构衰减自由振动

图 8 3 # 墩塑性铰区转角位移时程曲线

图 9 3[#] 墩墩顶水平位移时程曲线

表 5 转角位移检算结果

南厶旦	墩的最大	、转角 θ _p /(×1	0 ⁻³ rad)	容许塑性转角 $ heta_{u}$ /		$ heta_{ m u}/ heta_{ m p}$	
墩百 万 一	地震波1	地震波 2	地震波 3	$(\times 10^{-3} \text{ rad})$	地震波1	地震波2	地震波 3
1	3.220	4.854	2.491	37.070	11.51	7.64	14.88
2	5.308	3.107	4.389	35.588	6.70	11.45	8.11
3	6.310	3.160	3.984	37.310	5.91	11.81	9.36
4	4.233	3.330	4.507	38.224	9.03	11.48	8.48
5	4.036	3.851	6.908	36.278	8.99	9.42	5.25
6	5.401	6.282	5.044	38.122	7.06	6.07	7.56

表 6 水平位移检算结果

歯ム旦	墩 ① 最大位移 △ d /m			<u> </u>	$\Delta_{ m u} / \Delta_{ m d}$			
慰百万	地震波1	地震波 2	地震波 3	谷叶恒移 Δu/m	地震波1	地震波 2	地震波 3	
1	0.048	0.064	0.042	0.319	6.64	4.98	7.58	
2	0.057	0.046	0.051	0.263	4.62	5.73	5.17	
3	0.053	0.047	0.049	0.274	5.17	5.84	5.60	
4	0.047	0.041	0.051	0.235	4.99	5.72	4.60	
5	0.055	0.04	0.043	0.203	3.68	5.07	4.71	
6	0.042	0.057	0.040	0.212	5.04	3.71	5.29	

图 10 地震作用后结构残余变形示意图

响应的平均偏移值来评价残余变形。地震波3结束 后10s内,3*墩墩底转角、墩顶位移及上部结构位 移见图 11 和表 7、表 8。

由表 7、表 8 可知:墩顶残余位移和上部结构残 余位移基本是毫米级,而且其中位移值是偏保守的。 从图 11 曲线变化趋势来看,若继续延长零加速度 段,位移平均值将更小。总之,结构残余位移处于可 接受范围内。另外,墩顶残余位移比上部结构残余 位移大,前者 7 mm 左右,后者 5 mm 左右,体现了 橡胶支座自复位能力的重要作用。

(下转第109页)

厚增加2 cm,主梁最不利压应力已超标,对结构线 形的影响也较大。为了给主梁应力一定的压应力储 备,箱梁设计尺寸是合理的;但在主梁悬臂施工过程 中应严格控制板厚和超重,如果板厚增加2 cm,对 结构应力和线形均不利。

(2) 对于该连续刚构桥,对悬臂前端梁段给出 200 kN不对称荷载的限值不合适;21[#]~26[#]梁段 出现 200 kN不对称荷载较不利,其不对称荷载应 控制在 100 kN 以内。对于大跨连续刚构桥,给出 对称梁段的不对称荷载的控制限值为 20 t 的限制 并不合适,应通过计算论证确定该限值。

(3)该连续刚构桥桥面铺装厚度增加1 cm 对 结构应力和线形的影响均不大,若考虑将桥面铺装 厚度调整为10 cm,调整后结构最大压应力为16.9 MPa,和规范限值相比仍有一定富余。

参考文献:

- [1] 范立础.桥梁工程(上册)[M].3版.北京:人民交通出版 社,2017.
- [2] 邵旭东.桥梁工程[M].5版.北京:人民交通出版社, 2019.
- [3] 曾志刚.250 m 大跨度连续刚构桥的结构分析[J].城市

(上接第105页)

表7 各墩墩底、墩顶残余变形 墩底残余变形 墩顶残余变形

南厶旦	墩低残余变形	墩顶残余变形
墩百万	最大值/rad	最大值/m
1	$9.26 imes 10^{-4}$	6.96×10^{-3}
2	8.73×10^{-4}	4.31×10^{-3}
3	6.58×10^{-4}	4.92×10^{-3}
4	7.85×10^{-4}	4.07×10^{-3}
5	6.91×10^{-4}	3.79×10^{-3}
6	8.64×10^{-4}	4.62×10^{-3}

表 8 上部结构质心残余水平位移

工况	上部结构质心残余水平位移
地震波1作用	2.97×10^{-3}
地震波2作用	-1.43×10^{-3}
地震波3作用	5.16×10^{-3}

4 结论

结合工程实例,阐述了弹塑性动力时程分析法的过程,主要结论如下:

(1) 弹塑性动力时程分析结果很大程度上依赖 于地震波的选取,随机性很大。 道桥与防洪,2009,44(7):114-116.

- [4] 杨光强,吴辉,韦定超.超高墩大跨连续刚构桥设计[J]. 交通科技,2014(4):1-3+4.
- [5] 屈仆,王琛,刘海鹏.超高墩大跨长联连续刚构桥结构 分析[J].公路交通科技(应用技术版),2014(11):1-4.
- [6] 彭元诚,方秦汉,李黎.超高墩连续刚构桥设计中的关 键技术[J].桥梁建设,2006,44(4):30-33.
- [7] 陈仕刚,吴先树.超高墩大跨连续刚构主墩形式研究及 关键技术[J].公路,2012(5):104-108.
- [8] 项贻强,丰硕,汪劲丰,等.大跨径单室预应力连续刚构 箱梁桥的静力特性空间分析[J].公路交通科技,2005, 22(3):58-61.
- [9] 中交公路规划设计院有限公司.公路桥涵设计通用规 范:JTG D60-2015[S].北京:人民交通出版社股份有 限公司,2015.
- [10] 交通运输部公路科学研究院.公路工程质量检验评定 标准第一册 土建工程:JTG F80/1-2017[S].北京: 人民交通出版社股份有限公司,2017.
- [11] 中交第一公路工程局有限公司.公路桥涵施工技术规 范:JTG/T F50-2011[S].北京:人民交通出版社, 2011.

收稿日期:2020-03-15

(2)塑性铰屈服后可调整结构内力分布,使各 墩内力趋于均匀。

(3)对延性构件(桥墩)位移安全系数进行评价,验证了结构的安全性。

(4)分析了结构残余变形,体现了橡胶支座自 复位能力的重要作用。

参考文献:

m

- [1] 范立础.桥梁抗震[M].北京:同济大学出版社,1997.
- [2] 杨溥,李英民,赖明.结构时程分析法输入地震波的选 择控制指标[J].土木工程学报,2000,33(6):33-37.
- [3] POWELL G H. Influence of analysis and design assumptions on computed inelastic response of moderately tall frames[R], Report NO. UBC/EERC76/11, University of California, Berkeley, CA, 1976.
- [4] 鲍雷 T,普里斯特利 M J N.钢筋混凝土和砌体结构的 抗震设计[M].戴瑞同,译.中国建筑工业出版社,2011.
- [5] 重庆交通科研设计院.公路桥梁抗震设计细则:JTG/T B02-01-2008[S].北京:人民交通出版社,2008.

收稿日期:2020-02-28