基于可拓理论的湖北省公路运输适应性评价

陈琼蓉, 蒋惠园

(武汉理工大学 交通学院, 湖北 武汉 430063)

摘要:合理评价公路运输适应性对于找出公路运输短板、建设人民满意公路运输体系具有重要意义。文中基于交通高质量发展内涵,从安全、便捷、高效、绿色、经济 5 个维度选取 11 个评价指标构建公路运输适应性可拓评价模型,运用简单关联函数确定指标权重,计算公路运输适应性综合关联度及级别偏向特征值,并以湖北省为例进行验证。结果表明,2014—2018 年湖北省公路运输适应性介于良好适应和一般适应水平,且偏向于良好适应,能较好地适应交通高质量发展需求,且在提高公路运输安全、减少交通拥堵和节能减排方面仍有较大提升空间。

关键词: 公路运输;适应性评价;可拓理论

中图分类号:U491.2

20

文献标志码:A

文章编号:1671-2668(2021)02-0020-05

公路运输作为交通强国建设中关键一环,合理 评价其与社会经济、生态环境等多系统的适应性,对 找出公路运输短板、促进交通高质量发展具有重要 意义。对于综合交通运输系统评价,刘东等选取面 积密度、平均技术等级、建制村通畅率、国省道交通 量等反映公路网规模、质量、通达和运输等方面的指 标对全国 27 个重点区域进行公路网络发展水平评 价;金霞等从公路建设与经济发展的内在和外在表 现、与综合交通的协调性、非正常情况下适应性和建 设资金环境维度评价武汉市公路建设与经济发展活 应性;马娟等建立综合交通网合理性评价指标体系, 从规模、结构、服务质量等维度运用物元模型进行评 价;高贺等选取公路网连通度、里程拥挤率、经济费 用效益比、内部收益率等指标构建公路网规划方案 可拓评价模型;姚铭从布局结构、资源环境、社会评 价和技术评价四方面采取定性和定量评价相结合的 方式,采用基于粗糙集的改进 TOPSIS 方法对湖北 省道公路网布局进行评价。现有文献多侧重于研究 公路运输在路网规划、布局、费用效益和可持续性等 角度的适应性,缺少从高质量发展的角度考虑公路 运输与社会经济、生态环境等多系统的适应程度。 为克服上述缺陷,该文从安全、便捷、高效、绿色、经 济 5 个维度建立评价指标体系,引入可拓理论,对公 路运输的适应性优劣程度进行综合评价。

1 可拓评价模型

1.1 可拓学基本理论

可拓学是以矛盾问题为研究对象,利用关键因

素对问题进行细化,将事物 N、特征 C 和量值 V 作为描述问题的基元,记为 R=(N,C,V),通过描述事物和量值之间的关系,准确描述客观事物的变化过程。公路运输适应性评价体系中存在较多可变矛盾因素,评价标准随评价主体、评价时期和评价目标的变化而变化,建立公路运输适应性评价可拓模型可避免评价的不确定性。

(1) 确定经典域和节域。 R_0 为基元,将待评公路运输适应性划分为不同等级,记为 $N_j = \{N_1, N_2, \dots, N_m\}$ 。评价因素集 C 是公路运输适应性的评价指标, $C = \{C_1, C_2, \dots, C_n\}$ 。 V_{ji} 为各评价指标 i 对应不同评价等级 j 的取值范围,即经典域,记为 $V_{ji} = (a_{ji}, b_{ji})$ 。n 为评价指标个数。经典域表示为:

$$R_0 = (N, C, V) =$$

$$\begin{bmatrix} N_{j} & C_{1} & V_{j1} \\ & C_{2} & V_{j2} \\ & \dots & \dots \\ & C_{n} & V_{jn} \end{bmatrix} = \begin{bmatrix} N_{j} & C_{1} & (a_{j1}, b_{j1}) \\ & C_{2} & (a_{j2}, b_{j2}) \\ & \dots & \dots \\ & C_{n} & (a_{jn}, b_{jn}) \end{bmatrix}$$
(1)

 R_{p} 为适应性模型指标全体取值范围的基元,公路运输适应性评价等级的全体记为 N_{p} , N_{p} 关于 C_{i} 的取值范围记为 $V_{pi} = (a_{pi}, b_{pi})$ 。节域表示为:

$$R_{p} = (N_{p}, C, V_{p}) = \begin{bmatrix} N_{p} & C_{1} & (a_{p1}, b_{p1}) \\ & C_{2} & (a_{p2}, b_{p2}) \\ & \cdots & \cdots \\ & C_{n} & (a_{pn}, b_{pn}) \end{bmatrix}$$
(2)

(2) 建立关联函数。待评对象的单项评价指标 V_i 关于各评价等级i 的关联度表达式为:

$$k_{j}(v_{i}) = \begin{cases} \frac{-\rho(v_{i}, V_{ji})}{|V_{ji}|}, v_{i} \in V_{ji} \\ \frac{\rho(v_{i}, V_{ji})}{\rho(v_{i}, V_{pi}) - \rho(v_{i}, V_{ji})}, v_{i} \notin V_{ji} \end{cases}$$
(3)

式中: $\rho(v_i, V_{pi}) = |v_i - (a_{pi} + b_{pi})/2| - (b_{pi} - a_{pi})/2; |V_{ji}| = |b_{ji} - a_{ji}|; \rho(v_i, V_{ji}) = |v_i - (a_{ji} + b_{ji})/2| - (b_{ji} - a_{ji})/2_{\circ}$

(3) 确定评价等级。公路运输适应性 N 关于等级 j 的综合关联度为 $K_j(N)$, α_i 为评价指标 C_i 的权重系数,则有:

$$K_j(N) = \sum_{i=1}^n \alpha_i K_j(v_i)$$
 (4)

级别变量特征值用 J 表示,其数值大小表示适应性所对应的等级 j:

$$J = \frac{\sum_{j=1}^{m} j \cdot K_{j}(N)}{\sum_{j=1}^{m} \overline{K}_{j}(N)}$$

$$(5)$$

若 $K_j(N) = \max K_j(N)$,则 N_p 属于等级j,令

$$\overline{K}_{j}(N) = \frac{K_{j}(N) - \min K_{j}(N)}{\max K_{j}(N) - \min K_{j}(N)}$$
(6)

1.2 指标权重确定

为避免人为主观因素的影响,采用简单关联函数确定指标权重,公式如下:

$$t_{ji} = \begin{cases} \frac{2(v_i - a_{ji})}{b_{ji} - a_{ji}}, v_i \leq \frac{a_{ji} + b_{ji}}{2} \\ \frac{2(b_{ji} - v_i)}{b_{ii} - a_{ji}}, v_i > \frac{a_{ji} + b_{ji}}{2} \end{cases}$$
(7)

指标i对应的等级j越大,指标应赋权重越大时,有:

$$t_{i} = \begin{cases} j_{\text{max}} [1 + r_{ij \text{max}}(v_{i}, v_{ij})], \\ r_{ij \text{max}}(v_{i}, v_{ij}) \geqslant -0.5 \\ 0.5 j_{\text{max}}, r_{ij \text{max}}(v_{i}, v_{ij}) < -0.5 \end{cases}$$
(8)

指标i对应的等级j越大,指标应赋权重越小时,有:

$$t_{i} = \begin{cases} (m - j_{\text{max}} + 1)[1 + r_{ij\text{max}}(v_{i}, v_{ij})], \\ r_{ij\text{max}}(v_{i}, v_{ij}) \geqslant -0.5 \\ 0.5(m - j_{\text{max}} + 1), r_{ij\text{max}}(v_{i}, v_{ij}) < -0.5 \end{cases}$$
(9)

指标i的权重为:

$$\alpha = \frac{t_i}{\sum_{i=1}^n t_i} \tag{10}$$

2 公路运输适应性评价指标体系

2.1 评价指标选取

基于交通高质量发展内涵,建立的评价指标体系应包括安全、便捷、高效、绿色和经济5个层面,考虑到数据的可获得性和完整性,建立表1所示评价指标体系。

安全性综合考虑地区人口、汽车保有量和经济 发展水平差异,以综合事故率、单位运量事故率和事 故损失率来衡量公路安全性等级;便捷性考虑公路 网规模应适度领先经济发展、高等级公路比重和城 乡公路交通服务均等化发展;高效性主要以车辆在 公路网中的拥挤程度、行驶速度和公路网利用程度 来衡量;绿色化主要考虑公路运营阶段低碳减排效 果,以单位周转量碳排放来衡量;经济性考虑公路运

表 1 公路运输适应性评价指标体系

准则层	指标名称	公式	含义
	综合事故率/(×10 ⁻⁸)	$\beta_1 = \frac{N}{\sqrt{PV}}$	公路交通事故数与综合考虑人、车数量因素的比值,将不
	幼日事以平 /(八10)	\sqrt{PV}	同区域交通条件的差异性考虑在内进行评价
安全	单位运量事故率/(×10 ⁻⁸)	$\beta_{\rm s} = \frac{N}{Q}$	公路交通事故数与客货换算周转量的比值,换算周转量
	平位色里争以华八〇10	•	=货物周转量+旅客周转量×换算系数,换算系数取 0.1
	事故损失率/(×10 ⁻⁸)	$eta_{ ext{d}}\!=\!\!rac{M}{GDP}$	由公路交通事故所造成的单位 GDP 直接财产损失
	八吸回油水和棒拉下床	$D = \frac{l}{l}$	从实际公路里程与综合考虑面积、人口和经济发展水平
	公路网理论规模接近度	$D = \frac{l}{k\sqrt{AP}}$	等因素反映其便捷程度
压抽	高等级路网比重/%	$R = \frac{l_r}{l}$	l_r 为高速公路和一、二级公路里程,等级路网所占比重越
便捷		$K - \frac{1}{l}$	高,路网质量越好,行车可靠性越高
	农村客运班车覆盖率/%	$_{\rm C}$ $_{\rm T_s}$	T_s 为通客运班车的乡镇数量, T_v 为乡镇总数。 C_v 越接
		$C_{\rm v} = \frac{T_{\rm s}}{T_{\rm v}}$	近于1,农村客运便捷程度越高

续表	1
----	---

准则层	指标名称	公式	含义
	干线公路网平均拥挤度	$\eta \!=\! \! rac{V_{ ext{r}}}{V_{ ext{s}}}$	反映干线公路网交通拥挤程度。 V_r 为路段实际交通量, V_s 为适应交通量。 η 越接近于 1 ,运行负荷越接近饱和
高效	干线公路平均行车速度/ (km·h ⁻¹)	$\stackrel{-}{V}=rac{\sum\limits_{i=1}^{n}V_{i}}{\sum\limits_{i=1}^{n}V_{i}}$	反映路网流量在公路系统中运行快慢,表征路网通畅程度
	干线公路年平均日交通量/ (pcu·d ⁻¹)	$AADT = \frac{T}{365}$	T 为交通流量。AADT 越大,干线公路网利用效率越高
绿色	碳排放强度/(×10 ⁻⁴)	$G = \frac{\sum_{i=1}^{n} E_i F_i}{Q}$	E_i 为能源类型, F_i 为 CO_2 排放因子。交通运输业碳排放量采用"自上而下"法测算,各类能源的 CO_2 排放因子参考《省级温室气体清单编制指南》确定。根据已有研究,公路运输 CO_2 排放量约占整个交通运输业排放量的 87.4%
经济	投入产出比/%	$\max E_0 = \frac{\mu^{T} Y_0}{\nu^{T} X_0}$ $E_j = \frac{\mu^{T} Y_j}{\nu^{T} X_j}, \mu \geqslant 0, \nu \geqslant 0$	以公路里程、营运车辆数、从业人员和固定资产投资为投入,以客运周转量和货运周转量为产出,采用CCR模型进行测算,综合效率越接近于1,投入产出比越高

输的总投入(包括从业人员、固定资产投资、公路里 程和营运车辆)和总产出(包括客运周转量和货运周 转量)的投入产出比。

2.2 适应度等级划分

根据公路运输适应性的内涵和评价指标的具体 内容划分成5个评价等级,分别为优质适应(S₁)、良 好适应(S_2)、一般适应(S_3)、勉强适应(S_4)、不适应(S_5),各评价等级指标区间见表 2。

3 湖北省公路运输适应性评价

3.1 湖北省公路运输概况

以湖北省 2014—2018 年公路运输为研究对象,

表 2 公路运输适应性评价等级指标区间

VA: Idd ET	77 (A 4P. 4-7	各等级指标区间						
准则层	评价指标	S_1	S_2	S_3	S ₄	S_5		
	综合事故率/(×10 ⁻⁸)	0~2	2~4	4~6	6~8	8~10		
安全	单位运量事故率/(×10 ⁻⁸)	$0\sim 2$	$2\sim4$	$4\sim6$	6~8	8~10		
	事故损失率/(×10 ⁻⁸)	0~0.1	$0.1 \sim 0.2$	$0.2 \sim 0.3$	0.3~0.4	$0.4 \sim 1$		
	公路网理论规模接近度	0.9~1.0	0.8~0.9	0.7~0.8	$0.6 \sim 0.7$	0~0.6		
便捷	高等级路网比重/%	$12\sim\!20$	$10 \sim 12$	$8 \sim 10$	$6\sim8$	$0\sim6$		
	农村客运班车覆盖率	0.9~1.0	0.8~0.9	$0.7 \sim 0.8$	$0.6 \sim 0.7$	$0 \sim 0.6$		
	干线公路网平均拥挤度	$0 \sim 0.4$	0.4~0.6	$0.6 \sim 0.7$	0.7~0.9	$0.9 \sim 1.5$		
高效	干线公路平均行车速度/ $(km \cdot h^{-1})$	60~90	50~60	40~50	30~40	0~30		
	干线公路年平均日交通量/ (pcu·d ⁻¹)	15 000~20 000	12 000~15 000	10 000~12 000	8 000~10 000	0~8 000		
绿色	碳排放强度/(×10 ⁻⁴)	$0\sim 1$	$1 \sim 1.2$	$1.2 \sim 1.4$	$1.4 \sim 1.6$	1.6~2.0		
经济	投入产出比	$0.9 \sim 1.0$	0.8~0.9	$0.7 \sim 0.8$	$0.6 \sim 0.7$	$0 \sim 0.6$		

数据主要来源于《湖北省统计年鉴》、《湖北省公路交通情况分析》和《中国能源统计年鉴》。根据表1所示评价指标体系,收集整理相关原始数据,经处理加工后得到各指标数据(见表3),根据式(10)计算得

出各指标权重(见表 3)。

3.2 湖北省公路运输适应性评价结果

根据式(4)~(7),计算得到湖北省公路运输和 各准则层适应性级别变量特征值(见表 4)。

vA: Ind E	化与互称		北层拉重				
准则层	指标名称	2014	2015	2016	2017	2018	一 指标权重
	综合事故率/(×10 ⁻⁸)	1.709	1.364	4.547	2.907	4.483	0.056
安全	单位运量事故率/(×10-8)	1.515	1.307	4.544	2.870	4.396	0.065
	事故损失率/(×10 ⁻⁸)	0.159	0.151	0.233	0.230	0.271	0.091
	公路网理论规模接近度	0.951	0.985	0.973	0.973	0.920	0.121
便捷	高等级路网比重	0.111	0.130	0.130	0.129	0.130	0.119
	农村客运覆盖率	0.819	0.829	0.842	0.848	0.872	0.101
	干线公路网平均拥挤度	0.504	0.486	0.534	0.516	0.532	0.113
	干线公路平均行车速度/	57.161	57.438	58.188	58.905	57.646	0.090
高效	$(km \cdot h^{-1})$	37.101	37.430	30.100	30.903	37.040	0.090
	干线公路年平均日	12 002	14 519	15 919	15 940	14 741	0.002
	交通量/(pcu·d ⁻¹)	13 992	14 512	15 213	15 248	14 /41	0.093
绿色	碳排放强度/(×10 ⁻⁴)	1.273	1.315	1.492	1.429	1.356	0.066
经济	投入产出比	0.987	1.000	0.998	0.993	1.000	0.085

表 3 湖北省公路运输适应性评价指标数据及指标权重

表 4 湖北省公路运输和各准则层适应性级别变量特征值

左爪		各准则层	适应性级别	适应性等级			
年份	安全	便捷	高效	绿色	经济	— 偏向特征值	迫巡任寺级
2014	2.286	2.042	2.124	2.881	1.157	2.104	$[S_2,S_3]$
2015	2.151	1.922	2.077	3.068	1.000	2.027	$[S_2,S_3]$
2016	3.754	1.903	2.064	3.840	1.029	2.002	$[S_2,S_3]$
2017	3.384	1.896	2.036	3.640	1.093	2.062	$[S_2,S_3]$
2018	3.844	1.947	2.105	3.264	1.000	2.016	$[S_2,S_3]$

由表 4 可知: 2014—2018 年,湖北省公路运输适应性级别变量特征值为[2.002,2.104],即处于良好适应和一般适应等级区间,偏向于良好适应等级,表明湖北省公路运输能较好地适应交通高质量发展需求,但仍存在一定提升空间。为更直观地描述各子系统评价等级的变化趋势,将数据绘制成折线图(见图 1)。

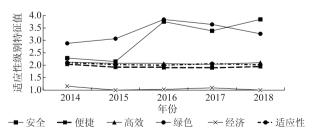


图 1 湖北省公路运输系统子系统适应性变化趋势

从安全性来看,其特征值由 2014 年的 2.286 上 升到 2018 年的 3.844,从良好适应变为勉强适应,表 明湖北省公路运输安全性近年来明显降低。自 2016 年起公路交通事故率持续处于高位状态,虽然 近年来湖北省贯彻落实了"公路安全生命防护工 程"、"整治公路货车违法超限超载行为专项行动"、 "湖北省城市道路交通文明畅通提升行动计划(2018—2020年)"等一系列重要举措,但并未取得明显成效,在提升公路运输安全性上仍大有可为。

从便捷性来看,其特征值均值为 1.942,整体处于良好适应水平,无明显波动。湖北省公路网规模能较好地适应社会经济发展,高等级路网比重维持在 11%~13%,行政村通客车率达 100%,客运班车覆盖率稳步提升,农村人口出行便捷度不断提高。

从高效性来看,其特征值为[2.036,2.124],介于良好适应与一般适应水平,整体偏向于良好适应,说明干线公路网能较好地满足高效出行需求且路网利用率稳中有增。2014—2018年,湖北省国省干线及高速公路拥挤度大于1的道路数均维持在4%~8%,除少数路段可能会造成拥挤外,其余能较好地满足高效性需求,平均行车速度基本稳定在57~58km/h。

从绿色性来看,其特征值呈先上升后下降趋势, 在一般适应和勉强适应水平波动。绿色性特征值在 2016年达到峰值,这一时期湖北省汽车保有量年均 增长达 18.078%,而后两年汽车保有量增速下滑至 14.549%,且随着新能源汽车的大力发展和清洁能 源的推广, 公路运输绿色化程度逐渐提高。

从经济性来看,其特征值均值为1.056,整体处 于优质适应状态,无明显波动。公路运输投入产出 综合效率值均大于 0.987,说明公路运输系统 DEA 有效,系统内部处于协调状态,资源投入和产出保持 相对平衡。

4 结论与建议

- (1) 基于可拓层次分析法计算得到的特征值表 明,2014-2018年湖北省公路运输适应性介于良好 适应和一般适应水平,偏向于良好适应,能较好地适 应交通高质量发展需求。湖北省公路运输安全性由 良好适应变为勉强适应;绿色性水平在一般适应和 勉强适应水平波动,目向利好趋势发展;便捷性、高 效性和经济性均无明显波动,分别位于良好适应、良 好适应和一般适应水平。
- (2) 湖北省公路运输离建设人民满意的公路运 输体系仍存在一定差距,在提高公路运输安全、减少 交通拥堵和节能减排方面仍有较大提升空间。在交 通强国背景下,湖北省未来仍需继续加大公路交通 基础设施投入,以智慧公路为导向,结合大数据治理 交通安全隐患和交通拥堵问题,提升公路安全水平, 促进交通流合理分配;提高公共交通服务水平,鼓励 公众乘坐公共交通工具,推进新能源、清洁能源的应 用,促进公路运输节能减排。
- (3) 文中构造的公路运输适应性评价体系,综 合了安全、便捷、高效、绿色、经济多方面,是对整个 公路运输综合评价的考量,克服了已有研究中只考 虑公路规模或布局等单一因素的不足,可为未来公 路运输发展方向研究提供借鉴。但也存在一些不足 之处,在研究公路运输高效性时,受数据可获得性影 响,未考虑城市内部公路通行状态。另外,该文是对 湖北省进行纵向对比研究,下一步可对不同省份之 间进行横向对比评价。

************************* (上接第19页)

- [10] 何申明,朱凯荣,井红兵.盐城市县道公路网规划中路 网规模的研究确定[J].山西建筑,2007,33(33):66-67.
- [11] BRUNO F Santos, ANTONIO P Antunes, ERIC J Miller.Interurban road network planning model with accessibility and robustness objectives [J]. Transporta-

参考文献:

- [1] 刘东,金凤君.我国重点区域公路网络发展水平评价研 究[J].交通运输系统工程与信息,2013,13(3):189-
- [2] 金霞,雷桂荣,朱顺应,等,公路建设与经济发展适应性 宏观诊断[J]. 武汉理工大学学报(交通科学与工程 版),2018,42(4):710-714.
- [3] 马娟,谢艳芳,邹继贤.基于物元模型的综合交通网合 理性评价[J].公路,2013(3):151-155.
- [4] 高贺,夏晓英.基于可拓理论的公路网规划方案评价研 究[J].武汉理工大学学报(交通科学与工程版),2015, 39(3):501-505.
- [5] 姚铭.湖北省省道公路网布局优化及评价研究[D].武 汉:武汉理工大学,2017.
- [6] 沈惊宏,陆玉麒,兰小机.基于分形理论的公路交通网 络与区域经济发展关系的研究[J].地理科学,2012,32 (6).658 - 665.
- [7] 张矢宇,韦金汛,仲超,等.基于 PCA-DEA 的武汉城 市生态交通发展综合评价[J].公路与汽运,2018(6):
- [8] YI Fujun, DENG Wei, CHENG Xi, et al. Adaptability evaluation for road network in economic circle[J].Journal of Highway and Transportation Research and Development (English Edition), 2011, 5(2):127-131.
- [9] RAJA Rafidah Raja Muhammad Rooshdi, NURIZAN Ab Rahman, NAZURAH Zahidah Umar Baki, et al. An evaluation of sustainable design and construction criteria for green highway[J]. Procedia Environmental Sciences, 2014, 20:180-186.
- [10] 蔡文,杨春燕.可拓学的基础理论与方法体系[J].科学 通报,2013,58(13):1190-1199.
- [11] 易克勤.基于物元分析法的高速公路沥青路面结构方 案优化研究[J].公路与汽运,2020(2):56-61.
- [12] 刘文超, 兰乔, 李一兵, 等. 一种新的道路交通安全综 合评价方法[J].交通运输工程与信息学报,2011,9 (2):102-106.
- [13] 李晔. 道路运输行业节能减排路径分析与对策研究 [D].上海:同济大学,2015.

收稿日期:2020-09-27

tion Planning and Technology, 2010, 33 (3): 297 -313.

[12] ANTONIO Antunes, ALVARO Seco, NUNO Pinto. An accessibility-maximization approach to road network planning [J]. Computer-Aided Civil and Infrastructure Engineering, 2003, 18(3): 224-240.

收稿日期:2020-09-15