DOI:10.20035/j.issn.1671-2668.2022.03.019

基于探地雷达的沥青路面摊铺厚度及 路面 3D 可视化技术研究

傅利荣1,黄建平1,廖名举2,张彤3,马懿4

(1.中电建路桥集团有限公司,北京 100070;2.中电建路桥集团有限公司东南发展有限公司,浙江杭州 311225;3.中国水利水电第五工程局有限公司,四川成都 610065;4.中国水利水电第十二工程局有限公司,浙江杭州 310005)

摘要:采用单主机、多通道的探地雷达系统开发沥青路面摊铺厚度智能管控系统,实现沥青路 面摊铺厚度高精度实时监测、分析和展示;利用沥青路面松铺厚度单点离散数据,采用插值粒度可 调的三次样条算法建立路面施工 3D 可视化模型,并提取厚度差、各厚度差面积等参数建立以松铺 厚度离散指数、摊铺厚度达标率和厚度成本控制率为指标的路面摊铺厚度评价方法。

关键词:公路;沥青路面;摊铺厚度;3D 可视化;探地雷达

文献标志码:A

中图分类号:U415.52

文章编号:1671-2668(2022)03-0076-04

路面摊铺中各结构层厚度对路面施工质量控制 至关重要,松铺层厚度对成型路面的使用性能和寿 命及材料的使用有十分重要的影响。传统的人工测 量方式采用测厚钢叉进行松铺厚度测量,存在精度 不足、覆盖面低、耗时费力、人为因素影响大、信息反 馈不及时等缺陷,改变人工测量方式,实现摊铺厚度 实时采集对路面质量控制、辅助项目管理尤为重要。 该文采用单主机、多通道探地雷达,利用雷达波反馈 数据实时获取摊铺断面的摊铺厚度、摊铺机的松铺 厚度,建立路面施工 3D 可视化模型,指导摊铺机操 作手及现场管理人员及时调整施工异常情况,确保 摊铺质量。

1 多通道探地雷达系统设计

1.1 多通道探地雷达数据采集硬件开发

探地雷达摊铺厚度测量系统由1台雷达主机、2 个测厚探头、1台终端显示器组成。要有效采集全 路幅松铺厚度数据,摊铺机定制探地雷达需具备 路幅全覆盖、多通道多点沥青层厚度与温度测试 能力。多通道探地雷达数据采集系统设计中,探 地雷达探头与雷达主机采用分体式设计,由控制 电缆连接,系统硬件主要由雷达主机、天线探头、 测厚探头(搭载温度传感器)和控制电缆组成(见 图 1)。系统采用外部供电方式,探头与主机之间 通过控制电缆连接,采用并行工作方式,探头工作 数量可自由设定。 沥青路面摊铺厚度智能管控平台开发 摊铺厚度数据通过现场设备采集并传输到云端

图 1 探地雷达摊铺厚度采集模型

数据平台,进行数据统计分析后通过沥青路面摊铺 厚度智能管控平台展示,登录界面见图 2,摊铺实时 监控展示见图 3。

设上下限作为摊铺厚度控制标准区间,合格率 以下限为限值计算。从图 3 可以看出:2020 年 9 月 4 日摊铺厚度波动较大,前期存在低于下限值的情 况,后期调整后满足厚度下限要求,摊铺厚度得到有 效控制。

图 2 沥青路面摊铺厚度智能管控平台登陆界面

图 3 沥青路面摊铺数据分析展示

2 探地雷达系统的应用

图 4 为探地雷达摊铺厚度测量系统应用测试现 场。应用过程和方法如下:1) 安装。将测厚探头通 过磁座安装在摊铺机踏板上,并固定雷达主机及显 示器。确定雷达工作状态、探头安装位置、天线垂直 度和雷达高度。2) 预热。接通电源,雷达预热 5 min 后开始采集摊铺厚度数据。3) 标定。在摊铺机行进 过程中,按"标定"键锁定雷达工作状态,使用测厚钢 叉测试雷达标定点的实际松铺厚度,并用游标卡尺精 确测量,按钢叉实测厚度调整介电常数作为标定值。 4) 实测。完成标定、介电常数调整后,雷达自主进入 实测状态并生成沿施工方向的测厚测线。

图 4 雷达应用测试现场

2.1 摊铺厚度数据的采集

以G351常山段沥青路面工程为依托,探地雷 达摊铺厚度测量系统以1次/(10 s)的频率完成松 铺厚度数据采集。因下面层较厚,数据相对稳定,厚 度数据选取下面层数据。该路段下面层设计厚度为 60 mm,松铺系数经过现场试验段测试确定为1.2。 根据下面层设计厚度、松铺系数、规范要求的厚度允 许偏差及成本控制等因素,确定松铺厚度上下限分 别为65 mm、80 mm。图5~7 为雷达系统采集的 400 min 内下面层厚度数据。

由图 5~7 可知:前期松铺厚度偏差较大,波动 明显,处于施工调整阶段;后期数据逐渐趋于稳定, 基本满足下面层 72 mm 的施工控制范围;通道 2 数 据相对稳定,与通道 1 相比数据波动小,通道 1 所处 测线松铺厚度较通道 2 相对不足。

2.2 数据精度分析验证

2.2.1 数据特征分析

利用正态分布理论对雷达采集的路面厚度数据 进行分析,对各统计参数的标准差、均值、中位数等 统计特征参数(见表 1)进行对比分析。

图 5 下面层通道 1 雷达测试数据

图 7 下面层雷达测试数据平均值

表1 下面层厚度测试数据统计特征参数

检测	均值/	极差/	中位数/	众数/	标准差/	变异系
通道	mm	mm	mm	mm	mm	数/%
通道1	73.68	17	74	75	2.54	3.44
通道2	72.80	21	73	72	1.78	2.45
均值	73.24	19	74	73	2.16	2.95

从表1可以看出:下面层通道1与通道2的厚 度均值、中位数、众数相差不大,数据分布稳定;通道 1的标准差及变异系数比通道2的大,通道1的数 据波动更大,这可能与通道1雷达测试探头连接松 动有关。

2.2.2 数据对比验证

将雷达测试数据与摊铺现场采用测厚钢叉测试 的结果进行比较,结果见图 8。2 种方法在测试精 度、数据变化趋势上吻合良好;雷达测试数据与人工

实测值的误差为±1 mm的次数占 91.7%,误差为 ±2 mm的次数占 100%,雷达数据精度较高,但变 异系数比人工实测值大,数据波动较大。对比 2 组 路面厚度数据,探地雷达摊铺厚度测量系统能较好 地控制厚度上下限范围。

3 基于实测数据的路面摊铺 3D 可视化技术

3.1 路面摊铺 3D 可视化建模

利用沥青路面单点离散厚度测试数据,采用插 值粒度可调的三次样条算法对里程桩号和对应松铺 厚度进行插值运算,将点数据扩展为面数据,最终映 射成厚度分布热力图,实现路面摊铺厚度 3D 可视 化(见图 9)。

3.2 摊铺厚度离散评价指标

利用摊铺厚度模型,提取厚度差、各厚度差面积

等参数,建立以松铺厚度离散指数 TDI、摊铺厚度 达标率 TCR 和厚度成本控制率 TCCR 为指标的路 面摊铺厚度评价方法,完善沥青路面松铺厚度评价 体系。

(1) 厚度离散指数 TDI。该指标以厚度差作 为权数、各厚度差区域面积为自变量,综合评价厚度 离散状况。表达式如下:

$$TDI = \frac{\sum_{i=1}^{0} w_i A_i}{A} \times 100 \tag{1}$$

式中:*i* 为厚度离散标准的第*i* 厚度段;*i*。为厚度离 散标准中的4种类型;*w*;为第*i* 类厚度差面积的权 重,其值见表2;*A*;为厚度分布图中第*i* 类厚度差的 面积;*A* 为厚度分布图的总面积。

表 2 沥青路面摊铺	厚度离散	程度和权重
------------	------	-------

类别	厚度差/mm	厚度离散程度	权重 w_i
1	$<\!\!5$	无	0.0
2	$5\!\sim\!10$	轻度	0.5
3	$10\!\sim\!15$	中度	0.8
4	>15	重度	1.0

(2) 厚度达标率 TCR。该指标评价摊铺路面 混合料摊铺厚度是否满足最低施工要求。表达式 如下:

$$TCR = 1 - \frac{A_1}{A} \times 100 \tag{2}$$

式中:A₁为厚度分布图中低于最低摊铺厚度的数据 的面积;A 为采集的摊铺厚度数据的总面积。

(3) 厚度成本控制率 TCCR。该指标作为混合 料成本控制指标,用于优化混合料摊铺管控。表达 式如下:

$$TCCR = \frac{A_2}{A} \times 100 \tag{3}$$

式中:A₂为厚度分布图中高于最低摊铺厚度、低于 松铺厚度上限的数据的面积。

3.3 摊铺厚度评价分析

该路段摊铺厚度分布 3D 可视化模型见图 9。 该路段宽 7.5 m、长 100 m,松铺厚度最低要求为 65 mm,面积为 750 000 cm²。

(1) 厚度离散指数 *TDI*。该路段各厚度差的 面积见表 3,根据表 2,按式(1)计算,得 *TDI* = 0.91%。

(2) 厚度达标率 TCR。该路段要求摊铺厚度不低

表 3 摊铺路面厚度差的面积

厚度差/mm	A_i/cm^2	厚度差/mm	A_i/cm^2
<5	736 385	$10 \sim 15$	0
$5\!\sim\!10$	13 615	>15	0

于 65 mm。摊铺厚度<65 mm 的面积为19 876 cm², 按式(2)计算,得 TCR = 97.35%。

(3) 厚度成本控制率 TCCR。该路段要求摊铺
厚度不高于 80 mm。摊铺厚度≥65 mm、≤80 mm
的面积为 730 124 cm²,按式(3)计算,得 TCCR = 97.35%。

采用传统方式随机取样抽检该路段路面厚度, 结果显示:12%取样点的厚度低于设定的最低限值, 18%取样点的厚度超出设定的最高限值。

根据厚度离散指数计算结果,该路段松铺厚度 有轻微差异,但覆盖面积较小。根据厚度达标率计 算结果,仅2.65%区域的厚度低于下限要求,其余路 段都很好地控制了最低摊铺厚度。根据厚度成本控 制率计算结果,该路段摊铺厚度成本最低控制率为 97.35%。

4 结论

该文将雷达测厚技术应用于沥青路面摊铺厚度 实时监测,主要得到以下结论:

(1) 雷达测试数据与沥青摊铺现场常用人工测 厚工具测试的数据在测试精度、数据变化趋势上吻 合良好,同时避免了人工采样点离散、人为因素等影 响,具有良好的应用前景。

(2) 雷达测厚系统能完成沥青路面松铺厚度及 温度数据的稳定采集、准确记录及上传。

(3) 3D 摊铺厚度热力图能直观反映路面摊铺 效果,结合厚度离散指数、厚度达标率和厚度成本控 制率,能实现对沥青路面施工质量的有效把控。相 较于传统厚度控制方法,3D 可视化技术建立了沥青 路面松铺厚度综合评价体系,能准确反映沥青路面 摊铺厚度离散及成本控制情况。

参考文献:

- [1] 唐嘉明.基于三维探地雷达的沥青路面施工质量评价 与控制研究[D].广州:华南理工大学,2020.
- [2] 邹金平.路面雷达检测系统在沥青路面摊铺厚度检测 与控制中的运用[J].上海公路,2002(2):9-10.
- [3] 虞将苗,唐嘉明,张肖宁,等.基于三维探地雷达的沥青 (下转第 85 页)

山1号隧道一康定互通隧道出口与匝道分流鼻间距 均小于明适应距离+识别距离367 m的要求,且隧 道出口与渐变段起点间距均小于明适应距离+完整 认读标志并操作距离287 m,为此,对跑马山1号隧 道出口段、跑马山2号隧道出口段进行特殊结构设 计,拓宽一条车道作为辅助车道。3)考虑隧道内长 下坡段较长,I线跑马山1号隧道左线(车辆下行方 向)每间隔一处将停车带加长至100 m,以便车辆应 急停靠。4)考虑到跑马山1号、2号隧道之间海拔 较高,处于弯道和隧道洞口交界处,易受冰雪天气影 响,路面设计中采用主动抑制冰雪技术,添加盐化物 材料,延缓冰雪凝结。

5 结语

雅叶高速公路康定过境段总体设计中围绕项目 控制性因素,以不遗漏任何有价值的方案为原则,认 真比选,提出研究方案多达 30 余条,最终筛选出具 有价值的 10 条路线方案。从地质条件、运营安全、 工程规模、实施难度等方面综合比较,将相对较优的 I 线作为推荐方案。

围绕推荐方案,针对抗震设防烈度高的问题,提 出断裂带附近桥梁高度控制在 30 m 以下,且桥梁 全部采用钢结构、薄壁轻型墩、钢盖梁等措施;针对 长下坡的运营安全保障问题,提出跑马山 2 号隧道 与1号隧道之间增设一处避险车道、在跑马山 1 号 隧道出口段和跑马山 2 号隧道出口段拓宽一条车道 作为辅助车道、跑马山 1 号隧道左线(车辆下行方 向)每间隔一处将停车带加长至 100 m、隧道间路面 采用主动抑制冰雪技术等措施。

参考文献:

- [1] 交通运输部公路局,中交第一公路勘察设计研究院有 限公司.公路工程技术标准:JTG B01—2014[S].北京: 人民交通出版社,2014.
- [2] 唐正光,徐则民,吴华金,等.公路路基地质灾害与选线 设计[J].公路交通科技(应用技术版),2011(7): 66-68.
- [3] 贾兴利.高烈度地震峡谷区公路选线理论与方法研究 [D].西安:长安大学,2013.
- [4] 朱顺华.面向风险的高烈度地震区路线走廊带选择方 法研究[D].西安:长安大学,2012.
- [5] 周育名.公路路线走廊震害与环境基础因子关系研究 [D].西安:长安大学,2012.
- [6] 邱燕玲.基于风险调控原理的高地震烈度山区选线设 计研究[D].成都:西南交通大学,2015.
- [7] 江玉林,张前进,陈学平,等.高速公路选线环境评价方 法研究[J].公路,2005(7):71-74.
- [8] 王梓昭.山区高速公路路线优化设计及选线探析[J].公 路交通科技(应用技术版),2020(2):73-74.
- [9] 江启军.影响高速公路选线的因素分析及合理设计方 法研究[J].黑龙江交通科技,2020(4):49+51.
- [10] 杨德刚.从环境影响角度谈山区公路选线[J].交通世界,2017(15):20-21.
- [11] 刘小滔,薛佳,曹放,等.川西地区某省道改建工程路 线设计选择与方案研究[J].公路与汽运,2021(2): 93-95.
- [12] 张虢宁.济青中线高速公路潍青段总体设计及路线方 案探讨[J].公路与汽运,2021(3):54-57+67.

收稿日期:2021-08-16

(上接第79页)

路面厚度动态调整技术研究[J].中外公路,2020,40 (3):70-75.

- [4] MENG Y H,ZENG P,MENG X Y.A paving thickness monitoring device of paver [J]. Mechanical Electrical Engineering Technology,2018,47(4):24-28.
- [5] 庞小勇.公路路面厚度检测试验方法研究[J].黑龙江交 通科技,2020(6):72+74.
- [6] 吴忠辉.基于探地雷达的沥青路面厚度检测分析[J].公 路与汽运,2017(4):93-94.
- [7] LIU D H, WU Y.Continuous measuring and real-time visualization monitoring of pavement lift thickness in highway construction [J]. China Journal of Highway

[8] 刘智琦,张睿.公路路面厚度检测试验方法解析[J].交 通世界,2018(36):54-55.

and Transport, 2017, 30(11): 41-43.

- [9] 王若俊,严筱.探地雷达在路面面层厚度检测中的应用 [J].公路交通科技(应用技术版),2018(8):137-140.
- [10] LIU H, SATO M. In situ measurement of pavement thickness and dielectric permittivity by GPR using an antenna array[J]. NDT & E International, 2014, 64: 65-71.
- [11] 臧国帅,金光来,蔡文龙,等.基于探地雷达和高速弯 沉仪的结构内部状态评价[J].公路与汽运,2020(3): 59-61.

收稿日期:2021-07-05