DOI:10.20035/j.issn.1671-2668.2023.01.014

膨胀土柔性面层土钉支护结构设计研究*

赵勇1,孟雄1,凌时光2

(1.昭通昭阳绕城高速公路投资开发有限公司,云南 昭通 657000;2.长沙理工大学 交通运输工程学院,湖南 长沙 410114)

摘要:介绍了一种具有抗侵蚀和生态性能的柔性面层土钉支护技术,通过向边坡内钻孔注浆 打入土钉来保证边坡的整体稳定性,并在土体增湿膨胀时通过面层材料的隆起变形释放一定膨胀 力来维持边坡的稳定;根据膨胀力和膨胀应变符合椭圆模型的分布规律,提出考虑膨胀土各向膨 胀异性的柔性面层土钉支护结构设计计算方法,结合工程实例计算出当边坡土体膨胀应变达 6% 时,各层土钉的内部整体稳定安全系数均满足大于 1.3 的要求。

关键词:公路;膨胀土;土钉支护;柔性面层;结构设计

中图分类号:U416.1

文献标志码:A

文章编号:1671-2668(2023)01-0069-06

土钉支护技术在膨胀土地区虽有应用实例,但 设计时对膨胀力的考虑多凭经验,限制了该技术在 膨胀土地区的推广,计算参数易获取且可考虑膨胀 力影响的膨胀土土钉支护结构设计计算方法有待研 究[1-6]。喻晓今提出黏聚力和破裂角参数,推导了 土与土钉支护的回归公式并用于土钉支护安全性预 测[7]。张庆山等基于基坑水平位移和沉降监测数 据,分析发现施工工艺、支护布置和周围条件是影响 基坑工程支护变形的主要因素[8]。肖昔泽等通过土 钉支护模型试验,发现土钉倾角对边墙变形和稳定 性有显著影响[9]。贺若兰等采用界面单元模拟土钉 的界面变形,建立了基坑土钉支护数值分析模 型^[10]。涂兵雄等应用剪力滞理论建立土钉内力传 递计算模型,分析了土钉内力传递规律[11]。丁敏等 应用改进遗传算法分析了土钉支护结构设计参数的 敏感性^[12]。Wu K. M.等推导了土钉应力计算公 式,并编写计算机程序应用强度折减法对膨胀土边 坡土钉支护的稳定性进行了计算[13]。以土钉支护 为主体的柔性面层土钉支护技术利用土工织物或特 殊材料制成的柔性面层包裹膨胀土边坡,允许其产 生一定变形,使边坡坡体急剧增加的膨胀力得以在 其表面释放,从而有效降低土钉和锚杆承担的荷载, 保障边坡的稳定性;同时可以植草绿化,具有生态环 保的功能[14]。文献「15]认为柔性面层土压力远小 于 Rankine 主动土压力,得出柔性面层土压力是

Coulomb 土压力的 50%。在柔性面层土压力设计 值取值上,德国取为主动土压力的 85%,法国取为 土钉轴力的 30%~40%,清华大学取为土钉设计轴 力的 0.5倍,面层土压力分布模式采用传统的三角 形模式或由工程经验总结出的经验梯形模式,工程 实践中一般采用上述计算得出的面层土压力乘以折 减系数计算得到^[18-20]。目前虽然在土钉支护研究 方面取得了一定成果,但在膨胀土地区的研究还是 理论落后于实际,更多的是依靠工程经验。本文综 合考虑膨胀土边坡遇水膨胀而产生的膨胀力及膨胀 变形对柔性面层土钉支护结构的影响,结合工程实 例提出考虑膨胀各向异性的膨胀土边坡柔性面层土 钉支护设计计算方法,为膨胀土边坡治理提供借鉴。

1 柔性面层土钉支护技术

柔性面层土钉支护技术通过柔性网面与土钉的 共同作用来维持边坡的稳定,已成功应用于福建、河 北、贵州等地陡坡防护工程。该技术通过向边坡内 钻孔注浆并打入土钉来保证边坡的整体稳定性,相 邻土钉间土体的局部稳定性主要依靠加筋麦克垫网 面的抗冲压极限力来保证。其防护效果见图 1。

柔性面层主要由加筋麦克垫、钢丝绳、锚垫板等 组成。加筋麦克垫和土钉端头采用锚垫板连接,外 部张拉钢丝绳使其贴在坡体上,坡面采用U形钉锚 固(见图2)。其作用是保护边坡表层,防止土钉之

^{*}基金项目:云南省交通运输厅科技创新示范项目(云交科教便(2021)48号)

图 1 边坡柔性面层土钉支护效果

图 2 柔性面层与土钉锚固

间碎屑流失,在土体发生位移时协同土钉一起工作。

加筋麦克垫是一种抗侵蚀性能优异的坡面防护 产品,是通过抽丝热黏工艺将聚合物网丝与双绞合 六边形钢丝网面复合而成的多空隙、高强度的土工 材料,具有较好的网面强度和刚度(见图 3)。加筋 麦克垫不仅具有局部稳定作用,还具有保护雨滴和 风对土壤的动力冲击、降低土壤表面水流速度、避免 水土流失、促进种子发芽、加强植物根系、土体永久 加筋等功能。

图 3 加筋麦克垫

土质边坡经加筋麦克垫和土钉加固后,采用快 速绿化方法进行植被恢复,将含种子的高性能生态 基材喷播到加筋麦克垫的空隙中,实现边坡的绿化 (见图 4)。

图 4 生态基材喷播

与传统的拱形骨架+锚杆支护、框架梁+锚杆 支护、抗滑桩等刚性支护结构相比,柔性面层土钉支 护技术的抗侵蚀和生态性能更好,整体性更强,且工 序简便,成本较低,还能避免土工格栅加筋反包对膨 胀土边坡造成的开挖扰动,是一种刚柔并济的生态 处治技术。

2 边坡稳定性分析

2.1 膨胀土各向异性计算模型

膨胀土边坡与其他土质边坡最大的不同在于其 支挡结构除受到上覆荷载引起的侧向土压力作用 外,还受到膨胀土增湿过程中侧向膨胀受到约束而 产生的侧向膨胀力作用,实测土压力往往大于静止 或主动土压力,且不同深度的膨胀力作用效果不同, 易造成支挡结构变形破坏。以往在膨胀土地区结构 设计时常用竖向膨胀力进行折减代替侧向膨胀力, 相关数值计算中也常把膨胀土视为各向同性材料进 行简化处理。但研究发现,膨胀土竖向膨胀与侧向 膨胀之间并不是简单的对等,存在膨胀各向异性,不 能简单地通过竖向膨胀力折减获得侧向膨胀力。

文献[21]的研究表明,膨胀土竖向膨胀力和侧向膨胀力随深度大致呈抛物线分布,在大气显著影响层深度 h_a(约 2 m)处达到最大值,其后随深度增加,因渗水减少,膨胀力逐渐减小;达到大气影响层 深度 h_w(2.5~3.5 m)时,由于含水量不再变化,膨胀力为零。因此,宜在实测大气影响层上限(约 3.5 m)范围内考虑膨胀土压力的作用。为工程应用方便,将膨胀土压力分布视为三角形分布,将大气显著影响层深度 h_a视为膨胀土压力达到最大值的深度。此外,某一深度处各方向膨胀力分布呈椭圆形(见图 5)。因此,只需测得膨胀土的竖向和水平膨胀力,以此作为椭圆的长轴和短轴建立椭圆方程,便可按式(1)计算作用于边坡表面各方向的膨胀力。

度。

$$P_{\alpha} = \frac{P_{yp}P_{xp}}{\sqrt{(P_{yp}\cos\alpha)^2 + (P_{xp}\sin\alpha)^2}}$$
(1)

式中: P_{yp} 、 P_{xp} 分别为恒体积条件下竖向膨胀力和侧向膨胀力(kPa),由室内膨胀试验测得。

考虑到膨胀土初始湿密状态确定后,其膨胀潜势已确定,若不计摩擦损耗,膨胀力和膨胀变形可自由转化,恒体积条件下膨胀力和无荷膨胀率是两种极限状态。膨胀力 *P*_a越大,将其充分释放后所产生的膨胀应变 ε_{sa}也越大。

同样,将无荷膨胀率考虑为椭圆模型,有:

$$\mathbf{r}_{sa} = \frac{\boldsymbol{\varepsilon}_{yp} \boldsymbol{\varepsilon}_{xp}}{\sqrt{(\boldsymbol{\varepsilon}_{yp} \cos \alpha)^2 + (\boldsymbol{\varepsilon}_{xp} \sin \alpha)^2}}$$
(2)

式中: ε_{yp}、ε_{xp}分别为无荷条件下竖向膨胀应变和侧向膨胀应变(%),由室内膨胀试验测得。

2.2 稳定性分析方法

2.2.1 柔性面层释放的膨胀力计算

由于允许膨胀土边坡在增湿膨胀过程中对加筋 麦克垫挤压,在防止边坡表面土层掉落的同时释放 部分膨胀力,需获取垂直于柔性面层方向的膨胀力 随膨胀应变的变化规律。借鉴文献[22]中膨胀力-膨胀变形拟合公式,由膨胀应变计算膨胀力:

$$R_{\rm f} = \frac{P_{ai}}{P_{a}} = \left(1 - \frac{\varepsilon_{\rm sai}}{\varepsilon_{\rm sa}}\right)^n \tag{3}$$

式中:R_f为与膨胀变形相关的膨胀力折减系数,反 映膨胀变形对膨胀力衰减的影响程度;P_{ai}为发生一 定膨胀应变后的膨胀力(kPa);ε_{sai}为发生的一定膨 胀应变(%);n 为拟合参数。

综上,通过室内膨胀试验测得恒体积条件下两向膨胀力、无荷膨胀条件下两向膨胀率后,由式(1)~ (3)即可计算得到发生一定膨胀应变后作用于柔性 面层的膨胀力。

2.2.2 土钉有效极限抗拔力计算

采用极限平衡法对土钉支护结构进行整体稳定

性分析时,如何考虑土钉对潜在滑动体的抗力作用 十分关键。土钉实际受力情况非常复杂,一般情况 下,土钉起抗拉、抗剪及抗弯作用。目前基坑支护技 术规范在计算土钉抗力对边坡稳定性影响时仅考虑 土钉的抗拉作用,忽略其他作用,不仅大大简化了计 算过程,而且这种算法本身是偏于安全的,可靠易 行。因此,本文仅计算土钉的有效极限抗拔力。

土钉发生极限破坏时,除土钉沿锚孔界面发生 拔出破坏外,还有土钉周围土体发生剪切破坏、土钉 钢筋达到抗拉屈服强度、土钉钉头发生极限破坏及 土钉钢筋从浆体中拔出破坏等,每种破坏形式对应 一个极限抗拔力,取其中极小值作为土钉对滑动体 的有效极限抗拔力。由于实际工程中土钉钢筋达到 抗拉屈服强度和土钉钢筋从浆体中拔出这两种破坏 形式几乎不会出现,只计算另外 3 种极限破坏形式 的极限抗拔力。

(1) 土钉沿锚孔界面发生拔出破坏时,由土钉 外层固化浆体与土体界面的抗剪强度 $\tau_{\rm f}$ 按式(4)计 算土钉的极限抗拔力 $T_{\rm T}$ 。计算时,参考文献[21], 土钉外层固化浆体与土体界面的摩擦角取综合内摩 擦角的 50%。

 $T_{T} = \pi dL_{a}\tau_{f}$ (4) 式中:d 为土钉钻孔直径; L_{a} 为破裂面外的土钉长

(2) 土钉周围土体发生剪切破坏,即土钉连同
 周围土体一起被拔出时,土体的极限抗剪强度 τ 按
 式(5)计算,土钉的极限抗拔力 T。按式(6)计算。

 $\tau = c + \sigma \tan \varphi$ (5) 式中: $c \, , \varphi$ 分别为土的凝聚力和内摩擦角; σ 为该处 土的竖向应力。

$$T_{\rm c} = \pi dL_{\rm a} \tau \tag{6}$$

(3) 土钉钉头发生极限破坏时,由土钉端头的极限抗阻力 T_{yb}按式(7)计算土钉的极限抗拔力 T_D。

 $T_{\rm D} = \pi d \left(L - L_{\rm a} \right) \tau_{\rm f} + T_{\rm yb}$ (7) 式中:L 为土钉长度。

2.2.3 内部整体稳定安全系数

土钉支护从上而下逐层施工,相比建成后,施工 阶段更危险,尤其是在某一层开挖完毕、土钉还没有 安装时,需验算施工期间不同开挖深度时边坡的内 部整体稳定性。图6为计算示意图。

对于每种验算工况,采用优化计算方法搜索确 定最危险滑裂面,即计算最小安全系数 F_s。F_s应满

图 6 内部整体稳定性计算示意图

足以下条件:

 $F_s \ge 1.3 \delta \gamma_0$ (8) 式中:δ 为设计状态系数,根据 SL 203—97《水工建 筑物抗震设计规范》^[23],考虑自然地震作用时取 0.85,其他情况(包括人工爆破产生的地震)下取 1.0; γ_0 为基坑边坡的重要性系数,安全等级为一级 时取 1.1,安全等级为二级时取 1.0,安全等级为三级 时取 0.9。

内部整体稳定安全系数 F。由下式计算:

$$F_{s} = \frac{R}{S} \tag{9}$$

式中:R为结构抗力函数,按式(10)计算;S为作用 效应函数,按式(11)计算。

$$R = \sum \left\{ \left[c_i l_i + (W_i + Q_i) \cos \theta_i \tan \varphi_i \right] + T_j \right/ \\ D_j \left[\cos(\theta_i + \alpha_j) + \sin(\theta_i + \alpha_j) \tan \varphi_i \right] \right\}$$
(10)

$$S = \sum (W_i + Q_i) \cos\theta_i + P_{\theta_i} A \tag{11}$$

式中: c_i 、 φ_i 分别为第i 土条滑动面处土的黏聚力和 内摩擦角; l_i 、 θ_i 分别为第i 土条滑弧段长度和滑弧 段中点的切线与水平面的夹角; W_i 为土条质量,浸 润线以上采用湿容重计算,浸润线与坡外水位之间 采用饱和容重计算,坡外水位以下采用浮容重计算; Q_i 为每个土条的上覆荷载; T_j 、 D_j 、 α_j 分别为第j 排 土钉的有效极限抗拔力、水平间距及土钉与水平面 的夹角;A 为坡面单位长度的面积; P_{θ_i} 为第i 土条 与侧向膨胀力成 θ 角方向的膨胀力。

3 实例分析

3.1 工程概况

云南省昭阳西环高速公路右侧膨胀土路堑边坡 K7+490—550 段采用柔性面层土钉支护方案进行 治理。边坡高度 6 m,坡率为 1:1.5。采用 6 m 长 PSB785¢18 土钉,土钉间距为 2 m,与水平方向成 15°倾角。柔性面层厚度为 12 mm,钻孔直径为 85 mm,孔内灌注纯水泥浆,采用 42.5R 硅酸盐水泥, 水灰比为 0.4:1(见图 7)。通过室内试验测得该段 膨胀土的基本物理力学指标(见表 1)。

图 7 柔性面层土钉支护方案设计(单位:m)

表1 边坡膨胀土基本物理和力学指标

项目	试验值	项目	试验值
塑限/%	34.2	标准吸湿含水率/%	4.81
液限/%	75.3	最大干密度/(g•cm ⁻³)	1.58
自由膨胀率/%	85.0	有效黏聚力/kPa	25.0
最佳含水率/%	26.1	有效内摩擦角/(°)	10.0

3.2 膨胀土边坡稳定性验算

采用上述膨胀土边坡柔性面层土钉支护设计计 算方法对该膨胀土边坡进行稳定性验算。

3.2.1 作用在柔性面层上的膨胀力

通过室内膨胀试验测得该路堑边坡膨胀土的竖 向膨胀力 P_{xp}为 300.0 kPa,侧向膨胀力 P_{xp}为 180.0 kPa,对应竖向无荷膨胀率和侧向无荷膨胀率分别 为 13.24%、4.99%。由于缺少二维膨胀仪,在由室 内膨胀试验获取侧向膨胀力随侧向变形的变化规律 时,先通过击实得到击实样,再将其旋转 90°由环刀 压样切削得到环刀试件,最后放入常规固结仪中完 成侧向膨胀试验。归一化后两向膨胀规律见图 8。

图 8 归一化后两向膨胀规律

通过式(3)对图 8 所示规律进行拟合,得到拟合 参数 n = 0.242 9,相关性系数 $R^2 = 0.990$ 3。由 式(1)计算得垂直于边坡坡面且作用于柔性面层的 膨胀力 P_a 为 241.2 kPa,由式(2)计算得该方向的无 荷膨胀率为7.83%,此时边坡表面变形达到最大值, 对应膨胀力消散为零。对最大膨胀率进行折减,按 式(3)计算得到不同变形程度下柔性面层上的作用 力(见表 2)。

折减系数	膨胀应	膨胀力/	折减系数	膨胀应	膨胀力/
$R_{ m f}$	变/%	kPa	$R_{ m f}$	变/%	kPa
0.0	0.00	241.2	0.6	4.70	36.8
0.1	0.78	126.8	0.7	5.48	26.3
0.2	1.57	98.0	0.8	6.27	16.8
0.3	2.35	77.9	0.9	7.05	8.1
0.4	3.13	61.9	1.0	7.83	0.0
0.5	3.92	48.5			

表 2 不同膨胀率下膨胀力计算结果

3.2.2 土钉的有效极限抗拔力

边坡从上至下共布置6排土钉,分别编号为1~ 6。按式(4)、式(6)、式(7)分别计算每排土钉沿锚孔 界面发生拔出破坏、土钉周围土体发生剪切破坏、土 钉钉头发生极限破坏时土钉的有效极限抗拔力,结 果见表 3。其中土钉端头的极限抗阻力 *T*_{yb}取土钉 抗拉强度的 70%。

表 3 不同破坏形式下土钉的极限抗拔力 单位:kN

土钉 — 编号	不同破坏形式下土钉的极限抗拔力			
	土钉沿锚孔	土钉周围土体	土钉钉	
	界面拔出	剪切破坏	头破坏	
1	66.31	79.51	185.53	
2	59.36	71.19	191.46	
3	55.43	66.47	194.82	
4	55.30	66.32	194.93	
5	60.54	72.60	190.46	
6	74.57	89.42	178.47	

3.2.3 内部整体稳定安全系数

按表 3 中土钉沿锚孔界面拔出时土钉的极限抗 拔力计算内部整体稳定安全系数。该高速公路右侧 膨胀土路堑边坡支护安全等级为二级,工程重要性 系数 γ₀取 1.0。柔性面层后膨胀土发生不同膨胀应 变时各排土钉的内部整体稳定安全系数见表 4。

由表4可知:随着柔性面层对膨胀力的释放,膨 胀土膨胀应变增大,各排土钉内部整体稳定安全系 数逐渐增大;膨胀应变达6%时,各层土钉的内部整 体稳定安全系数均满足大于1.3的要求。

4 结论

(1) 柔性面层土钉支护技术主要依靠土钉周围

表 4 内部整体稳定安全系数 F_s

土钉	不同膨胀应变(%)下内部整体稳定安全系数						
编号	0.0	1.0	2.0	3.0	4.0	5.0	6.0
1	0.37	0.67	0.83	1.01	1.22	1.47	1.79
2	0.35	0.62	0.77	0.92	1.09	1.28	1.53
3	0.47	0.81	0.98	1.15	1.34	1.55	1.79
4	0.32	0.60	0.76	0.94	1.15	1.42	1.78
5	0.30	0.59	0.77	0.98	1.26	1.65	2.24
6	0.29	0.59	0.79	1.04	1.40	1.96	2.33

浆体与土体界面的摩擦提供锚固力,土体增湿膨胀 时通过加筋麦克垫的隆起变形释放一定膨胀力,维 持边坡的稳定。

(2)根据膨胀力和膨胀应变符合椭圆模型的分 布规律,结合两者之间的函数关系,可计算出作用在 柔性面层上的膨胀力,用于局部整体稳定性计算。

(3) 实例计算结果表明,膨胀应变达 6%时,各 层土钉的内部整体稳定安全系数均满足大于 1.3 的 要求。

参考文献:

- [1] 李生林,秦素娟,薄遵昭,等.中国膨胀土工程地质研究 [M].南京:江苏科学技术出版社,1992.
- [2] 郑健龙.公路膨胀土工程理论与技术[M].北京:人民交通出版社,2013.
- [3] 杨光华.土钉支护技术的应用与研究进展[J].岩土工程 学报,2010,32(S1):9-16.
- [4] 李冬,岳大昌,唐延贵,等.微型桩复合土钉墙在膨胀土
 基坑中的应用研究[J].地下空间与工程学报,2016,12
 (6):1645-1652.
- [5] 曹国安,张鸿儒,张清.南昆线膨胀土土钉挡墙试验研 究[J].北方交通大学学报,1997,21(4):395-398.
- [6] 陈韧鸣.土钉墙支护技术在合肥膨胀土地区的应用 [D].合肥:合肥工业大学,2007.
- [7] 喻晓今.土钉支护强度比与类粘聚力关系试验研究[J].华东交通大学学报,2012,29(1):6-9.
- [8] 张庆山,胡敏云,夏玲涛.复合土钉支护变形特性的实 测分析[J].浙江工业大学学报,2009,37(6):689-693+698.
- [9] 肖昔泽,张亚芳,刘浩,等.土钉倾角对基坑侧壁变形与 稳定性能的影响[J].中山大学学报(自然科学版), 2013,52(2):28-32.
- [10] 贺若兰,张平,李宁.土钉支护加固机理的数值分析[J].湖 南大学学报(自然科学版),2007,34(1):14-18.
- [11] 涂兵雄,贾志刚,刘春晓,等.土钉支护机理的研究[J].河 北工程大学学报(自然科学版),2008,25(4):33-36.

- 「12〕 丁敏,张永兴,基于改进遗传算法的土钉支护结构优 化设计[J].土木工程学报,2011,44(S1):171-176.
- [13] WU K M, FANG J M.A study on the method of stability calculation of soil nailing expansive soil slope [J]. IOP Conference Series: Earth and Environmental Science, 2019, 218, 012028.
- 「14] 宋鹏.柔性面层土钉墙支护体系研究「D].西安:西安 建筑科技大学,2017.
- [15] 杨育文.土钉墙中土压力探究[J].地下空间与工程学 报,2010,6(2):300-305.
- 「16〕 宋二祥,陈肇元,崔京浩,等,深基开挖的土钉支护技 术(三):设计方法[J].地下空间,1996(2):64-75.
- 「17〕 杨茜,张明聚,孙铁成.复合土钉支护面层设计分析方 法研究[J]. 岩石力学与工程学报, 2005, 24 (7): 1259-1266.
- [18] PAPAGIANNAKIS A T, BIN-SHAFIQUE S, LY-TTON R L. Retaining structures in expansive clays

- 「4] 陈鹏,邹玲,庄明,等.苯乙烯丁二烯苯乙烯嵌段共聚物 改性沥青贮存稳定性评价方法[J].科学技术与工程, 2021,21(31):13505-13509.
- [5] 冯德成,崔世彤,易军艳,等.EBBR试验下沥青结合料 低温性能评价指标[J].交通运输工程学报,2021,21 (5):94-103.
- [6] 刘门闼.常祁高速公路胶粉/SBS 复合改性沥青混合料 性能评价与应用[D].长沙:长沙理工大学,2021.
- [7] KÖK B V, ÇOLAK H. Laboratory comparison of the crumb-rubber and SBS modified bitumen and hot mix asphalt[J].Construction and Building Materials, 2011, 25(8):3204-3212.
- [8] 马庆伟,郭忠印,李文博,等.不同因素对橡胶复合改性 沥青高温性能影响分析[J].中外公路,2022,42(3):

(上接第68页)

- [2] 欧孝夺,唐迎春,崔伟,等.h型抗滑桩模型试验及数值 模拟[J].岩石力学与工程学报,2012,31(9):1936-1943.
- 「3] 王羽,赵波,王强,等.基于有限差分法的h型抗滑桩结 构计算模型[J].防灾减灾工程学报,2015,35(4): 464-470.
- [4] 柳治国.ANSYS在h形抗滑桩设计中的应用[J].公路 工程,2013,38(3):144-147+154.
- [5] 王晨涛,刘欣,张尧禹,等.h 型抗滑桩的分析方法及在 滑坡治理工程中的应用[J].路基工程,2020(5):132-136.

[J].Geotechnical and Geological Engineering, 2014, 32 (6):1405-1414.

- [19] QI S C, VANAPALLI S K. Influence of swelling behavior on the stability of an infinite unsaturated expansive soil slope [J]. Computers and Geotechnics, 2016,76,154-169.
- [20] 陈永贵,雷俊,贾灵艳,等.圆饼状高压实膨润土膨胀 力各向异性特征研究[J].土木工程学报,2019,52 (1):99-107.
- [21] 张颖钧.挡墙后裂土膨胀压力分布与设计计算方法 [I].铁道学报,1995,17(1):93-102.
- [22] 张锐,赵旭,郑健龙,等.膨胀土侧向膨胀力试验研究 与应用[J].中国公路学报,2020,33(9):22-31.
- [23] 中国水利水电科学研究院.水工建筑物抗震设计规 范:SL 203-97[S].北京:中国水利水电出版社,1997.

收稿日期:2022-02-21

225 - 230

- [9] 杨光.季冻区工厂化废橡胶粉/SBS 复合改性沥青(CR/ SBSCMA)及混合料性能研究[D].西安:长安大学, 2016
- [10] TUR RASOOL R, WANG S F, ZHANG Y, et al. Improving the aging resistance of SBS modified asphalt with the addition of highly reclaimed rubber[J].Construction and Building Materials, 2017, 145:126-134.
- [11] 董泽蛟,周涛,栾海,等.SBS/橡胶粉复合改性 SH 型 混合生物沥青工艺及机理[J].中国公路学报,2019, 32(4):215-225.
- 「12〕 孙禧亭.红外光谱多元分析理论、方法及应用研究 [D].北京:北京化工大学,2020.

收稿日期:2022-08-16

- [6] 何志俊.基于数值模拟的 h 型抗滑桩优化设计研究[J]. 山西交通科技,2020(4):8-11.
- [7] 詹智麒,徐光黎.不同布桩方式对 h 型双排桩支护结构 影响的数值模拟[J].安全与环境工程,2020,27(3): 193-199.
- [8] 罗勇,姜波,李春峰,等.h型抗滑桩滑坡治理中的变形 特性及内力研究[J].地下空间与工程学报,2017,13 (6):1702-1710.
- 「9〕 中华人民共和国建设部.岩土工程勘察规范: GB 50021-2001 [S].北京:中国建筑工业出版社,2001.

收稿日期:2021-10-12

⁽上接第 63 页)