DOI:10.20035/j.issn.1671-2668.2023.04.013

基于压实稳定性的路基连续压实质量评价方法*

朱波¹,张宗堂²,杨子莹³

(1.中国铁建投资集团中铁建湖南高速公路有限公司,湖南常德 415000;2.湖南科技大学 岩土工程稳定控制与 健康监测湖南省重点实验室,湖南 湘潭 411201;3.华东交通大学 土木建筑学院,江西 南昌 330000)

摘要:连续压实控制技术主要通过在振动压路机对路基土体进行振动压实的过程中不断采集 压路机的振动响应信息,对振动轮下土体压实质量进行实时评价,实现对所有压路机全部碾压面 压实质量的整体检测。文中针对地基层刚度变化较大时连续压实检测值不能有效评价填筑层压 实质量的问题,采用压实单元的变化率作为压实稳定性指标评价填筑层土体的压实质量。

关键词:公路;路基;压实质量评价;压实稳定性;连续压实控制技术

中图分类号:U416.1 文献标志码:A

高速铁路与高速公路对结构整体沉降有更高的 要求,需要更加稳定的路基结构为其上部结构(如道 床、铁轨、路面等)提供足够稳定的支撑[1-2]。压实 质量是保证土工构造物长期稳定和有效运营的重要 条件^[2-4],须采用完善的检测技术、严格的验收标准 进行压实质量评价[5-7]。文献[8-9]指出,进行相 关性检验试验是采用连续压实质量控制的前提。然 而在某些工况下,由于连续压实指标的检测深度与 常规压实指标的检测深度存在较大差异,相关性检 验结果不合格。Adam D.认为10t 压路机的连续压 实指标的检测深度为 0.6~1.0 m,12 t 压路机的检 测深度为 0.8~1.5 m^[10]。Anderegg R.等研究连续 压实指标的检测深度与振幅之间的关系,提出每 增大 0.1 mm 振动 轮 竖 向 振 幅, 检 测 深 度 增 大 0.1 m^[11]。Rinehart R.V.等进行土体刚度参数检测 深度试验研究,结果表明刚度参数检测深度受压路 机吨位与振幅的影响较大[12]。当填筑高度小于连 续压实指标的检测深度时,若地基刚度变异较大,则 连续压实检测值受地基刚度的影响会产生较大变 异。常规压实质量控制方法为人工操作的点测试 验,其检测深度多与填铺厚度相等,变异较大的地基 刚度可能影响连续压实值与常规压实检测值的相关 性。此外,在进行连续压实质量控制与验收时,变异 较大的地基层刚度还可能影响压实程度和压实均匀 性评价结果。为避免地基层刚度不均匀对连续压实 检测的影响,本文在将点状分布的矢量连续压实值 **文章编号:**1671-2668(2023)04-0066-05

进行栅格化处理的基础上,采用压实单元的变化率 作为压实稳定性指标评价填筑层土体的压实质量, 并根据连续压实目标值 $V_{\text{CCV,Target}}$ 和块金常数目标值 $C_{0,Target}$ 确定稳定性目标值 $\Delta V_{\text{CCV,Target}}$,实现特殊工 况下连续压实质量控制。

1 路基连续压实检测方法

1.1 振动加速度参数 V_{CMV}和 V_{CCV}

相关研究表明,土体压实状态和振动轮加速度的幅值、谐波的幅值有关^[13]。据此 Thurner H. F. 等提出振动加速度参数 V_{CMV}^[14],其计算公式为:

$$V_{\rm CMV} = C \cdot \frac{a_{2\alpha}}{a_{\alpha}} \tag{1}$$

式中:C为常数; a_{Ω} 、 $a_{2\Omega}$ 分别为振动压路机振动频 率为 Ω 、 2Ω 时振动轮垂直加速度幅值(见图 1)。

在线性振动轮一土系统中,当振动轮的激振力为 30 kN时,振动轮的频率为 30 Hz, a₂₀/a_a的值恒

*基金项目:湖南省自然科学基金资助项目(2020JJ4019);湖南省教育厅科学研究项目(21C0360)

为零。实际上,由于振动轮一土系统为非线性(如土 具有非线性的弹塑性特性、振动轮发生部分脱离、振 动轮一土接触表面在每个加载周期中的非线性变 化),振动轮的加速度响应会失真,导致加速度曲线 不是纯粹的正弦曲线。傅里叶分析可以通过总结激 励的倍数重现波形失真频率。因此,a₂₀/a₀可用来 衡量失真度或非线性。

V_{CMV}和土体密度、刚度和模量的关系依据经验确定,且受振动轮尺寸、振幅及振动频率、前进速度、 土壤类型和下层已压实土的影响。Sakai 公司在 V_{CMV}的基础上,提出连续压实指标 V_{CCV},该指标在 考虑基波和一次谐波的基础上考虑了更高阶谐波, 计算公式如下:

$$V_{\rm CCV} = \left(\frac{a_{0.5\Omega} + a_{1.5\Omega} + a_{2.5\Omega} + a_{3\Omega}}{a_{2.5\Omega} + a_{3\Omega}}\right) \times 100 \qquad (2)$$

尽管与 V_{CMV} 相比 V_{CCV} 考虑了更多谐波对压实 质量评价结果的影响,但其本质上依旧是基于对振 动加速度信号的处理进行压实质量预测,并未从物 理、力学角度进行压实质量评价。

1.2 路基能量参数 O_{mega}

基于路基能量的概念,Bomag 公司提出采用 O_{mega}作为路基压实度的连续检测指标,该指标按 式(3)计算^[15],计算原理见图 2。

$$O_{\text{mega}} = \oint_{2T} (-(m_{\text{d}})\ddot{z}_{\text{d}} + (m_{\text{d}} + m_{\text{f}})g + m_0 e_0 \Omega^2) \dot{z}_{\text{d}} dt \qquad (3)$$

式中: m_d 、 m_f 、 m_o 分别为上车机架、振动轮和偏心轮 的等效质量; z_d 、 z_d 分别为振动轮的位移和加速度; g 为重力加速度; e_o 为偏心轮加速度。

图 2 振动轮一自由度集总参数模型

 F_s 由振动轮静载、惯性力和偏心力确定,忽略 机架的惯性力。振动轮的加速度由固定在振动轮上 的加速度计测试。 ω 值通过对 F_s 和 z_d 在两个周期 内积分得到^[16]。

1.3 动态割线刚度参数 E_{vib}

振动模量 E_{vib}通过基于集总参数振动和柱体弹

性半空间理论得到^[17]。Bomag 公司采用恒定压实 频率 Ω = 32 Hz,采用两个加速度计采集振动轮的垂 直加速度。相位滞后计算,使接触力 F_s 与图 2 所示 的力达到平衡。振动轮的位移由振动轮的加速度计 算得出。图 3 为 F_s - z_d 关系曲线,通过该曲线可得 到土壤刚度。Bomag 公司的 E_{vib} 测量值采用动态割 线刚度 k_s

图 3 接触力 F_s 一振动轮位移关系曲线

为了将 $F_s = z_d$ 特性、刚度k与振动模量 E_{vib} 联系起来,引入一个刚性柱体(见图 4)。卢德伯格理论的表达式如下:

$$z_{d} = \frac{2(1-v^{2})}{\pi E} \cdot \frac{F_{s}}{L} \cdot (1.886 \ 4 + \text{IN} \ \frac{L}{b})$$
 (4)

式中:*v* 为泊松比;*E* 为杨氏模量;*L* 为长度;*b* 为接 触宽度,按式(5)计算。

$$b = \sqrt{\frac{16R(1-v^2)}{\pi EL}F_s}$$
(5)

式中:R为半径。

k 和 E 的关系见图 4。 E_{vib}通过拟合方法确定。

图 4 基于弹性半空间理论的接触力和振动轮位移的关系

1.4 土体刚度参数 k_s

20世纪 90年代, Ammann 提出基于压路机振

动轮的土体刚度参数 k_s 。通过考虑图 2 中集总参 数模型来代表土体一振动轮一机架系统的垂直运动,其中土体用开尔文一沃伊特弹簧黏性阻尼模型 代替。通过频谱分析和对振动轮加速度峰值进行积 分,可以求得振动轮的位移幅值 z_d 。连续接触和局 部脱离状态所得 $F_s - z_d$ 响应见图 5。振动轮速度为 零时, k_s 按式(6)计算^[18]。

$$k_{\rm s} = \omega^2 \left(m_{\rm d} + \frac{m_0 e_0 \cos \phi}{z_{\rm d}} \right) \tag{6}$$

式中:ω为角速度;φ为转速。

*k*_s为*F*_s和 *z*_d的比值,是当振动轮处于轨迹线的 最底端且 *z*_d为最大时计算得出的(见图 5)。*k*_s代表 土体静态刚度(弹簧常数),由于开尔文一沃伊特弹 簧黏性阻尼模型可以很好地模拟土体,所以是有效 的。弹簧一阻尼可以很好地表征地基土及振动轮一 土系统的行为。

以上这些连续压实检测方法受到多种因素的限制,目前中国连续压实检测技术还处于初期发展阶段,还没有统一的标准来指导连续压实质量检测。 此外,基于连续压实检测指标的压实质量评价体系 还不完善。下面从压实稳定性的角度对已有连续压 实质量评价方法进行改进。

2 连续压实检测参数的栅格化处理

2.1 栅格结构的概念

压路机压实是人工操作的,受人为因素影响,前 后两遍的碾压轮迹在空间上无法重合,若要计算同 一坐标处前后两次压实值的变化率,须对整个碾压 面的检测数据进行栅格化处理,使不同遍数、相同碾 压面的数据一一对应。将原本为点分布的连续压实 检测数据(矢量数据)进行栅格化处理,将离散分布 的点以规则的阵列的栅格单元表示。在进行连续压 实检测数据栅格化处理前,须确定栅格单元大小。

2.2 栅格单元的划分

连续压实质量控制的检测单元是振动压路机有 效碾压宽度与其采样间隔的乘积。一个连续压实检 测值代表一个检测单元面积范围内土体压实状态的 平均值。以 BW219 DH-3 振动压路机(轮宽 2 m) 为例,该压路机装载美国天宝公司(Trimble)生产的 CCS900 连续压实检测系统,连续压实检测指标 V_{ccv}的检测单元面积为 0.4 m²(见图 6)。

图 6 检测单元示意图

在进行连续压实检测数据栅格化处理时,先根据 碾压面的施工参数划分相应网格。如图 7(a)所示,假 设某一碾压面长为L m、宽为B m,则通过计算机生 成一个 5 $L \times 0.5B$ 的网格(矩阵)。若某一连续压实 检测点P 的坐标为(x,y),其栅格化后所在网格的单 元位置为第i 行、第j 列,则i、j 满足下式:

$$\begin{cases} 2(i-1) \leqslant x \leqslant 2i \ ; i=1,2,\cdots,0.5B\\ 2(j-1) \leqslant x \leqslant 2j \ ; j=1,2,\cdots,5L \end{cases}$$
(7)

通过式(7)可以将点分布的连续压实数据 V_{ccv}(*x*,*y*)转化为矩阵 *Z*(*i*,*j*)[见图7(b)]。

图 7 连续压实检测数据的栅格化处理

2.3 空白网格的插值

在实际工程中,由于连续压实检测值是等时间

间隔输出的,检测点空间分布的疏密程度受到压路 机行驶速度的影响。当行驶速度大于额定行驶速度 时,检测点的输出间距小于网格间距,可能导致同 一个网格中出现2个连续压实检测值;当行驶速度 小于额定行驶速度时,检测点的输出间距大于网格 间距,可能导致某些网格为空白网格。对于出现 2个或2个以上连续压实检测值的网格,取落在网 格内所有检测点的平均值作为该网格的值。对于空 白网格,则采用线性插值法进行空间局部插值,通过 线性插值建立从变量与基本变量之间的线性关系,从 而导出以基本变量作为未知量的总体线性方程组,并 转换为压实单元的变化率与稳定性指标的目标值。

3 稳定性指标及其目标值

3.1 压实单元的变化率

设某一碾压面长为 L m、宽为 B m,网格尺寸 为 5L×0.5B,定义 $V_{ccvi,j}^k$ 为第 k 遍第(i,j)网格单 元(压实单元)的连续压实检测值,第 k 遍与第 k-1 遍第(i,j)压实单元的变化率为 Δ $V_{ccvi,j}^k$,计算公式 如下:

$$\Delta V_{\text{CCV}i,j}^{k} = \frac{V_{\text{CCV}i,j}^{k} - V_{\text{CCV}i,j}^{k-1}}{V_{\text{CCV}i,j}^{k-1}}$$
(8)

在确保所选择的压路机能够将所填筑的土体压 实至规定密实度的前提下,从压实稳定性的角度,以 变化率 $\Delta V_{ccvi,j}^{k}$ 作为压实稳定性指标并代替压实值 $V_{ccvi,j}^{k}$ 来评价压实单元(i, j)的土体压实度是否达 到要求。图 8 为将某刚度不均匀基层的最后一遍碾 压面的压实值 $V_{ccvi,j}^{k}$ 转化为变化率 $\Delta V_{ccvi,j}^{k}$ 的效 果图。

根据图 8,转化为变化率后碾压面更均匀,压实 薄弱区域为其变化率大于某一目标值(暂定为 5%) 的区域。在地基层刚度不均匀情况下,若直接采用 连续压实值对碾压面压实质量进行评价,会将某些 区域误判为薄弱区域(如第一条碾压轮迹中间部 分),也可能无法判别某些真实的薄弱区域(如第二 条碾压轮迹的起始部分)。

3.2 稳定性指标的目标值

采用连续压实值 V_{ccv} 作为压实质量控制指标 时,须通过相关性检验试验确定目标值 $V_{ccv,Target}$ 来 判断某一点的土体压实度是否达到要求。同样,采 用稳定性指标 ΔV_{ccv} 时,也需要确定稳定性目标值 $\Delta V_{ccv,Target}$ 。奧地利/国际土力学与岩土工程学 会(ISSMGE)颁布的规程规定采用 5%作为碾压轮 迹前后两遍的限定值,中国《铁路路基填筑工程连续 压实控制技术应用规程》^[19]采用 2%作为 ΔV_{ccv} 的 限定值。然而,在不同工况下,压路机型号、吨位、碾 压工艺参数、填土种类都不尽相同,检测结果的精度 不同,若采用上述两种规程的方法,以某一固定值作 为稳定性指标的目标值,会在某些工况下导致控制 标准过于严格或过于宽松。

在理想状态下,随着碾压遍数的增加,路基填筑 层由松散向密实状态变化,理论上,在确保压路机能 够将所填筑土体压实到规定密实度的前提下,当相 邻两遍振动压实值差值为零时,路基结构的反力、压 实状态和塑性变形都不再变化。然而,由于量测误 差等不确定性因素的影响,即使填土的压实状态达 到最大密实度,压路机前后两遍的压实值差值也无 法为零。Facas N. W.等对连续压实值的不确定性 进行研究,认为不同填土性质、不同压路机、不同压 实工艺参数都会对连续压实值的不确定性产生影 啊^[20]。本文基于连续压实检测数据空间随机性变 异程度的统计指标块金常数 C_0 (见图 9),提出适用 于不同工况的稳定性目标值 $\Delta V_{CCV,Target}$ 。

为了推导随机变异性指标块金常数 C_0 与稳定性目标值 $\Delta V_{\text{CCV, Target}}$ 的数理关系,对块金常数 C_0 的数理意义进行分析。

$$\gamma(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} \left[V_{CCV}(x_i) - V_{CCV}(x_i + h) \right]^2$$
(9)

$$\gamma^*(h) = C_0 + C \left[1 - \exp(-h/a)\right]$$
(10)

式中:N(h)为采样间隔为h的点对数; $V_{ccv}(x_i)$ 为样本点 x_i 的属性值;C为偏基台值;a为变程。

当 h 趋近于零时, N(h) 趋近于 1, $\gamma(h)$ 趋近于 0.5[$V_{ccv}(x) - V_{ccv}(x+h)$]², exp(-h/a) 趋近于 1, $\gamma^*(h)$ 趋近于 C_0 。令 $\gamma(h) = \gamma^*(h)$, 则有 $C_0 =$ 0.5[$V_{ccv}(x) - V_{ccv}(x+h)$]²。定义 ΔV_{ccv} 为同一 位置检测值的差值, $\Delta V_{ccv} = V_{ccv}^{k}(x) - V_{ccv}^{k-1}(x)$, 则有:

$$\Delta V_{\rm CCV} = \sqrt{2C_0} \tag{11}$$

进一步推导 $\Delta V_{CCV,Target}$ 与 ΔV_{CCV} 和目标压实值 $V_{CCV,Target}$ 间的数学关系,得:

$$\Delta V_{\text{CCV, Target}} = \frac{V_{\text{CCV, Target}}^{k} - V_{\text{CCV, Target}}^{k-1}}{V_{\text{CCV, Target}}^{k-1}} = \frac{\sqrt{2C_{0, \text{Target}}}}{V_{\text{CCV, Target}}}$$
(12)

通过在下卧层刚度均匀的试验段进行标定试验,得到连续压实目标值和块金常数目标值,代入式(12),即可求得稳定性目标值 ΔV_{CCV,Target}。

4 结语

针对规范中路基压实质量评价方法的不足,从 压实稳定性角度提出改进方法与新指标,主要工作 与创新点如下:

(1)针对地基层刚度变化较大时连续压实检测 值不能有效评价填筑层压实质量的问题,在将点状 分布的矢量连续压实值进行栅格化处理的基础上, 采用压实单元的变化率作为压实稳定性指标评价填 筑层土体的压实质量。

(2) 国内外相关规范都采用某一固定的百分比 来限制前后两遍连续压实值的相对差值,未能根 据不同工况下压实度检测结果的不确定性来控制压 实标准。本文根据半变异函数模型中能够表征连 续压实检测数据空间随机性变异程度的地统计指 标块金常数 C_0 与连续压实变化率 $\Delta V_{\rm CCV}$ 的数学关 系,提出在试验段进行标定试验得到连续压实目标 值 $V_{\rm CCV,Target}$ 和块金常数目标值 $C_{0,Target}$ 并据此反算 稳定性目标值 $\Delta V_{\rm CCV,Target}$ 的方法,实现对路基连续 压实质量的评价。

参考文献:

- [1] 林彰银.雪峰山高速公路路基沉降施工技术及其质量 控制研究[J].公路工程,2017,42(1):156-159+232.
- [2] 张洪亮,王秉纲.黄土路基压实标准研究[J].公路工程, 2008,33(5):19-23.
- [3] 何漓江,刘祖德.室内击实试验与路基施工压实度控制 问题探讨[J].中南公路工程,2001,26(3):80-82.
- [4] 孙青峰,黄雄立,郭昕,等.路基压实度不足对路基路面结构性能影响试验研究[J].公路与汽运,2019(1): 96-99+107.
- [5] 田利民.客运专线铁路路基压实标准与验收标准的探 讨[J].铁道标准设计,2007,51(11):1-4.
- [6] 贾想,陆阳,刘小燕.路面结构动态模量反演[J].公路工程,2010,35(1):23-27.
- [7] 周进华,黄金荣,徐永福.宕渣路基压实质量检测方法 研究[J].公路与汽运,2008(6):88-92.
- [8] VENNAPUSA P K R, WHITE D J, MORRIS M D. Geostatistical analysis for spatially referenced roller-integrated compaction measurements [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6): 813-822.
- [9] WHITE D J, VENNAPUSA P K R, GIESELMAN H H.Field assessment and specification review for rollerintegrated compaction monitoring technologies[J]. Advances in Civil Engineering, 2011, 2011;1-15.
- [10] ADAM D. Roller-integrated continuous compaction control (CCC) technical contractual provisions & recommendations[C]//Design and Construction of Pavements and Rail Tracks: Geotechnical Aspects and Processed Materials, 2007:120-148.
- [11] ANDEREGG R,KAUFMANN K.Intelligent compaction with vibratory rollers: Feedback control systems in automatic compaction and compaction control[J]. Transportation Research Record: Journal of the Transportation Research Board, 2004, 1868(1):124-134.
- [12] RINEHART R V, MOONEY M A. Measurement depth of vibratory roller-measured soil stiffness[J]. Géotechnique, 2009, 59(7): 609-619.
- [13] 徐光辉.路基系统形成过程动态监控技术[D].成都: 西南交通大学,2005.
- [14] THURNER H F,SANDSTRÖM A.Continuous compaction control,CCC[C]//European Workshop Compaction of Soils and Granular Materials, Presses Ponts et Chaussées,2000;237-246.

(下转第80页)

7 结论

(1) 天然气管道下穿高速公路时,路基沉降计 算中,顶管施工时采用以空隙量为土体损失量的方 法;定向钻施工时采用土体损失率法,土体损失率取 $3\% \sim 6\%$.

(2) 天然气管道下穿高速公路应设置地下通 道(涵)或套管,如未设置保护套管,应对管道受力进 行验算。

(3) 管道下穿高速公路应考虑高速公路远期扩 建中堆载对管道振动、次生应力与位移的影响,埋深 4 m 内应考虑压路机压力与振动的影响。

(4) 为保障管道安全,建议管道下穿高速公路 路基段采取水平线形穿越的方式,管道两端采用柔 性接头。

(5) 采用水泥砂浆对管道与孔壁环空间隙内的 泥浆进行置换,尽量减小土体损失率。

(6) 加强管道沿线标志与警示牌设置,防止道 路施工时在管道浅埋段上方堆载。

参考文献:

- [1] 广东省交通运输厅.广东省交通运输厅关于公路路政 许可涉路施工质量和安全技术评价的管理办法:粤 交〔2020〕1号[A].广州:广东省交通运输厅,2020.
- [2] 安徽省公路管理局,安徽省公路路政总队,交通运 输部公路科学研究所.涉路工程安全评价规范: DB 34/T 2395—2015 [S]. 合肥: 安徽省交通运输厅, 2015
- [3] 云南省公路路政管理总队,云南省公路工程监理咨询 公司,重庆蒙韬交通工程设计咨询有限公司.涉路项目 工程技术评价规范:DB 53/T 2020-2017[S].北京:人 民交通出版社股份有限公司,2017.

(上接第70页)

- [15] 张青哲.土基振动压实系统模型与参数研究[D].西 安:长安大学,2010.
- [16] MOONEY M A, RINEHART R V, FACAS N W, et al. Intelligent soil compaction systems [R]. NCHRP Report 676,2010.
- [17] KRÖBER W, FLOSS R, WALLRATH W. Dynamic soil stiffness as quality criterion for soil compaction[C]//Geotechnics for Roads, Rail Tracks, and Earth Structures, 2001:188-199.
- [18] MOONEY M A, ADAM D. Vibratory roller integra-ted

- [4] 中交第一公路勘察设计研究院有限公司.公路路线设 计规范:JTG D20-2017[S].北京:人民交通出版社股 份有限公司,2017.
- [5] 中交公路规划设计院有限公司,公路桥涵设计通用规 范:JTG D60-2015[S].北京:人民交通出版社股份有 限公司,2015.
- [6] 魏纲.盾构隧道施工引起的土体损失率取值及分布研 究[J].岩土工程学报,2010,32(9):1354-1361.
- [7] 周正峰,凌建明,梁斌,等.机坪输油管道荷载附加应力 分析[J].同济大学学报(自然科学版),2013,41(8): 1219 - 1224 + 1262.
- [8] 支喜兰,江晓霞,沙爱民.路面基层振动压实作用下的 底基层应力[J].长安大学学报(自然科学版),2003, 23(3):33-36.
- [9] 李广信,张丙印,于玉贞.土力学[M].北京:清华大学出 版社,2022.
- 「10〕 中华人民共和国机械工业部.动力机器基础设计规范: GB 50040-1996 [S].北京:中国标准出版社,1996.
- [11] 中国石油天然气股份有限公司管道分公司,中国石油 天然气股份有限公司西气东输管道分公司,中国石油 天然气股份有限公司西部管道分公司,等.油气管道 地质灾害风险管理技术规范:SY/T 6828-2011[S]. 北京:石油工业出版社,2011.
- 「12〕 中国石油天然气集团公司.油气输送管道穿越工程设 计规范:GB 50423-2013[S].北京:中国计划出版 社,2013.
- [13] 中国石油天然气管道工程有限公司,中国石油天然气 管道局穿越分公司,中国石油天然气管道科学研 究院.油气输送管道工程水平定向钻穿越设计规范: SY/T 6968—2013 [S].北京:石油工业出版社,2013.
- 「14〕 中国石油天然气集团公司,输气管道工程设计规范: GB 50251-2015[S].北京:中国计划出版社,2015.

收稿日期:2022-05-24

measurement of earthwork compaction. An overview[C]//Proceedings of the 7th International Symposium on Field Measurements in Geomechanics, 2007.

- [19] 西南交通大学.铁路路基填筑工程连续压实控制技术 规程:TB 10108-2011[S].北京:中国铁道出版社, 2011.
- [20] FACAS N W, MOONEY M A. Characterizing the precision uncertainty in vibratory roller measurement values[J]. Journal of Testing and Evaluation, 2012, 40(1):43-51.

收稿日期:2022-05-20