DOI:10.20035/j.issn.1671-2668.2023.05.027

大跨预应力连续梁桥悬臂施工控制研究

吴湛

(佛山市公路桥梁工程监测站有限公司,广东佛山 528041)

摘要:采用 MIDAS/Civil 建立某大跨预应力连续梁桥有限元模型,分析不同施工阶段荷载作 用下桥梁位移和应力变化及施工过程中温度对主梁挠度的影响。结果表明,一个梁段施工完成后 会影响前一个梁段标高,但各梁段控制偏差变化趋势大致相同;梁段悬臂越长,浇筑、张拉前后挠 度越大;温度对悬臂梁段变形有很大影响,温度越高,悬臂竖向变形越大;大跨径连续梁桥悬臂施 工时,预应力张拉产生的位移只能抵消一部分恒载位移;浇筑、张拉前后箱梁实测应力大多小于理 论值,最大悬臂时梁段的预应力储备增大。

关键词:桥梁;预应力连续梁桥;悬臂施工;施工控制 中图分类号:U445 **文献标志码**:A

文章编号:1671-2668(2023)05-0124-04

大跨径预应力连续梁桥一般采用挂篮悬臂施 工,施工中受施工荷载、张拉预应力、混凝土收缩徐 变、挂篮变形、温差及基础沉降等因素影响易产生较 大变形^[1-2],并随着节段的增加产生较大的施工累 积变形,造成桥梁合龙时出现较大高差,最终导致不 能合龙或成桥线形不平顺^[3]。因此,对预应力连续 梁桥施工进行实时监控十分有必要。本文以某大跨 预应力连续梁桥为对象,通过 MIDAS / Civil 建立桥 梁有限元模型,结合实测数据,分析桥梁在不同施工 阶段的变形和应力变化。

1 有限元模型构建

1.1 工程背景

广佛肇(广州一佛山一肇庆)高速公路佛山段上 一座三跨预应力混凝土连续梁桥,跨径布置为 65 m+115 m+65 m(见图 1),主跨位于缓和曲线 上,半径为 865 m。上下行分幅设置,箱梁顶面设置 横坡,箱底与桥面平行。上部结构采用 C60 预应力 混凝土悬浇变截面连续箱梁,主梁采用大悬臂单箱 单室直腹板箱形断面,箱梁宽 16.25 m,箱室宽 8.25 m,悬臂长 4.05 m;根部梁高 7.0 m,跨中和边 跨现浇段梁高 2.8 m,箱梁梁高按二次抛物线变化。

1.2 模型构建

该桥采用挂篮悬臂施工,悬臂箱梁节段沿墩顶 对称布置,每个墩共14个悬浇段。施工顺序为采用 支架施工箱梁0*节段→悬臂浇筑1*~14*节段,同 时采用支架现浇边跨直线段→边跨合龙→体系转 换→中跨合龙。节段划分见图 2。

图 2 箱梁节段划分

根据该桥结构形式和施工方式,采用 MIDAS/ Civil 建立全桥模型。模型采用梁单元建立并考虑 施工过程,边跨合龙前墩梁固结、合龙后转连续,不 考虑其他特殊荷载。模型共有 125 个节点、88 个单 元,图 3 为模型离散图。

图 3 桥梁有限元模型离散图

2 施工监控挠度分析

2.1 主梁实测挠度

线形监控是桥梁施工监控的重点^[4],也是评价 桥梁施工质量是否合格、外形是否美观的重要指标。 每个节段的标高监测数据可为后续节段的立模标高 计算提供数据支撑,从而使最终成桥线形满足要求。 考虑到施工阶段的累积位移及成桥后混凝土长期收 缩徐变和运营活载的影响,在立模标高中设置预拱 度,抵消这一部分变形,从而使桥梁达到理想线形。

连续梁桥悬臂施工主要有4种工况,分别为挂 篮前移、钢筋绑扎、混凝土浇筑、预应力张拉^[5],每种 工况都会对梁段变形产生影响。一个梁段施工完成 时,其实际标高和理论标高可能存在一定差异,这个 差异就是施工监控中的控制偏差。控制偏差越小, 施工水平越高,桥梁线形越精确。将该桥每个梁段 施工完成后的实际标高和有限元模型计算理论标高 进行比较,得到图4所示梁段施工控制偏差。

图 4 各梁段施工完成时的控制偏差

由图 4 可知:各梁段施工完成时当前梁段的控 制偏差变化不规律,如11[#]梁段施工完成时控制偏 差为负,而12[#]梁段施工完成时控制偏差为正,这是 由每个节段施工差异、梁段质量、调模精度、桥面临 时荷载等因素所致^[6]。一个梁段施工完成后前一梁 段标高发生变化,因为整个悬臂的质量变大。但前 面梁段的标高控制偏差与后面梁段完成时的标高控 制偏差的变化趋势相同,如10#梁段施工完成时9# 梁段的控制偏差为一17 mm,比9[#]梁段施工完成时 9^{*}梁段控制偏差-10 mm 有所增大,此前控制偏差 均为负值;而12#梁段施工完成时11#梁段的控制 偏差为零,比11#梁段施工完成时11#梁段控制偏 差-2 mm 有所减小,此后梁段的控制偏差均为正 值。总的来说,为使控制偏差尽可能小,必须控制那 些能使梁段产生变形的因素,一是准确调整模板标 高并重视温度的影响,二是控制桥上临时荷载和其 他不平衡荷载。

2.2 最大悬臂工况下主梁挠度

最大悬臂工况为桥梁施工最不利工况,也是桥

梁施工监控中最重要的节点,此时梁段支点处承受 最大负弯矩,梁端变形最大。最大悬臂工况下该桥 混凝土浇筑、张拉时梁段的理论累积变形见图 5、 图 6,梁段的浇筑、张拉变形见表 1。

◎ 图 6 最大悬臂张拉时梁段的累积位移(单位:mm)

表1 最大悬臂时梁段的浇筑、张拉变形

梁段号	14 # 梁段 变形	浇筑时的 /mm	14 # 梁段张拉时的 变形/mm				
	实测变形	理论变形	实测变形	理论变形			
12	-24	-23	12	11			
13	-29	-27	15	14			
14	-34	-32	18	17			

由图 5、图 6 可知:悬臂端在自质量荷载作用下 产生的变形呈现先缓慢上升后下降的趋势,在根部 较小,随着悬臂变长逐渐增大,在13*块附近产生最 大累积变形,在14[#]块后略微减小。结构中激活预 应力后,梁体产生向上的位移,张拉预应力产生的当 前位移与恒载产生的累积位移变化趋势较相似[7], 且预应力张拉位移只能抵消一部分恒载位移,还有 一部分恒载产生的位移通过合龙束预应力来消除。 悬臂施工刚开始时,梁段几乎没有变形;悬臂较大 时,张拉预应力后悬臂产生向下的累积位移,预应力 张拉产生的向上位移不足以抵消自质量产生的所有 向下位移。从表1也可以看出:梁段浇筑时变形向 下,梁段张拉时变形向上,但向下的位移大于向上的 位移。施工过程中可通过合理调整预应力钢束布置 位置和控制张拉力来抵消恒载产生的累积变形[7]。 但预应力在张拉时和后期运营阶段都有损失,预应 力损失会使桥梁发生下挠,影响桥梁线形,预应力的 张拉和贮备对桥梁施工阶段和运营阶段的整体线形 影响巨大。

2.3 温度对主梁挠度的影响

温度是影响桥梁结构变形和应力变化的重要指

标^[8],温度监测是桥梁施工监控的重要内容。在距 45[#]墩中心线 10 m 的截面上布置温度传感器(见 图 7),每 3 h 读取一次数据,连续观测 24 h,每次读 取温度数据的同时对悬臂梁端前 3 个节段的标高进 行测量,观测其挠度变化。顶板、腹板、底板的温度 监测结果见表 2、表 3,梁段挠度变化见表 4、图 8。

表 2 顶板和底板的温度监测结果

时刻	箱梁顶板各测点温度/℃			箱梁底板各测点温度/℃		마히	箱梁顶	板各测点	温度/℃	箱梁底	板各测点	温度/℃	
	1	2	3	4	5	6	н ј % ј	1	2	3	4	5	6
3:00	20.7	21.0	20.9	20.8	20.6	20.2	15:00	26.4	28.1	23.4	21.4	21.7	20.2
6:00	20.9	19.9	19.9	20.7	20.0	19.0	18:00	26.1	25.8	25.4	21.4	21.7	20.9
9:00	19.7	18.6	20.7	19.4	19.3	18.2	21:00	24.3	23.9	22.1	21.2	21.3	20.4
12:00	21.6	23.5	22.2	20.0	20.1	18.9	24 : 00	22.0	21.7	22.4	21.5	21.0	19.7

表 3 腹板的温度监测结果

时刻 -	左腹板各测点温度/℃			右腹板各测点温度/℃		마코	左腹板	各测点温	昰度/℃	右腹板	〔各测点湛	昰度/℃	
	7	8	9	10	11	12	н 1 %1	7	8	9	10	11	12
3:00	21.8	21.7	21.8	22.1	22.7	21.8	15:00	21.4	21.3	20.2	21.0	21.3	20.2
6 : 00	20.9	21.3	21.8	21.9	21.3	21.8	18:00	21.4	21.1	20.9	21.0	20.8	20.9
9:00	21.4	21.3	20.5	21.0	21.3	20.5	21:00	21.2	21.0	20.4	21.2	21.0	20.4
12:00	21.0	21.1	20.9	21.0	20.8	20.9	24 : 00	21.5	21.0	20.0	21.5	21.0	20.0

表 4 梁端的挠度变化

时刻 -	温度均值/℃			各梁段粱	各梁段梁端挠度(大里程)/mm			各梁段梁端挠度(小里程)/mm		
印 刻 .	箱梁顶板	箱梁腹板	箱梁底板	12#	13#	14#	12 #	13 #	14#	
3:00	20.9	21.8	20.5	0	0	0	0	0	0	
6 : 00	20.2	21.3	19.9	0	0	0	1	1	2	
9:00	19.7	21.1	19.0	-1	-1	-1	1	1	1	
12:00	22.4	21.0	19.7	-6	-7	-8	- 5	-6	-7	
15:00	26.0	21.0	21.1	-12	-14	-17	-11	-13	-15	
18:00	25.8	21.1	21.3	-10	-12	-15	-11	-13	-15	
21:00	23.4	20.9	21.0	-8	-9	-11	-8	-9	-11	
24:00	22.0	20.8	20.7	-6	-7	-8	-6	-7	-8	

图 8 温度一挠度一时间变化曲线

从图 8 可以看出:顶板受外界环境影响较大,温 度变化较明显;箱梁腹板和底板没有长期受阳光照 射,其温度变化不明显。温度升高,梁段下挠^[9], 15:00时左右挠度最大,箱梁温度也接近一天中最高 温度;之后随着时间的推移挠度慢慢变小,箱梁温度 也慢慢降低。桥梁悬臂越大,梁段挠度变化受温度 的影响越大,14[#]梁段的挠度比 13[#]、12[#]梁段大。 因此,如果在下午进行模板调整,必须考虑温度对梁 段变形的影响,对标高进行修正。

3 施工监控应力分析

应力是桥梁施工监控中的主要监测指标之一,

它能直接反映结构的施工质量与存在的安全隐患, 如果桥梁在施工过程中发生失稳、倾覆等情况,关键 截面的应力会发生急剧变化。在顶板顶层钢筋下 缘、底板底层钢筋上缘埋设应力传感器监测各工况 的应力变化,传感器方向与纵向钢筋顺直(见图 9)。

图 9 应力传感器的埋设位置

对该桥施工过程中的应力变化采用应力增量的 分析方式,分析梁段浇筑前后、张拉前后箱梁上下缘 应力变化,并与有限元模型计算的理论应力增量进 行对比,分析是否符合设计及规范要求。该桥左幅 45*墩应力监测结果见图 10~13。

从图 10~13 可以看出:各节段应力增量实测值 和理论值较接近,且变化趋势大致相同;大部分节段 实测应力小于理论值,且各节段上下缘均未出现拉 应力,表明预应力有一定储备,结构受力安全。张拉 后箱梁上缘累积应力增量在11[#]节段后增长速率

图 13 各节段张拉后箱梁下缘应力增量

减缓,箱梁下缘累积应力理论值与实测值一直比较 接近,但最大悬臂时下缘应力增量实测值小于理论 值,这是由于最大悬臂时为增加结构刚度,确保结构 处于安全状态,预应力储备增大。

4 结论

(1)一个梁段施工完成后会影响前一个梁段标 高控制偏差,但各梁段的变化趋势大致相同,大跨径 桥梁悬臂施工时预应力张拉位移只能抵消一部分恒 载位移。

(2)悬臂越大,梁段挠度受温度的影响越大,悬臂 梁段温度在15:00时左右达到峰值,此时挠度最大。

(3) 张拉后箱梁上缘累积应力增量在 11[#]节段 以后增长速率减缓,箱梁下缘累积应力理论值与实 测值一直比较接近,最大悬臂时预应力储备增大,确 保结构处于安全状态。

参考文献:

- [1] 陈序.大跨径预应力混凝土连续梁桥施工监控分析[J]. 福建交通科技,2020(3):85-89.
- [2] 谢明志,张涛,杨永清,等.快速铁路大跨连续梁桥施工 监控及控制体系研究[J].铁道标准设计,2017,61(12): 59-64.

(下转第131页)

1	2	1
Т	υ	T

			续表2			
项目名称		计算封底混	实际封底混			
	土层分类	水位高度 h_1/m	土层高度 h_2/m	渗透系数 $k_y/(m \cdot s^{-1})$	凝土厚度/m	凝土厚度/m
颍河特大桥 ^[15]	粉砂	11.50	5.50	2.0×10^{-5}	0.00	3.00
	粉质黏土		12.50	1.5×10^{-6}	2.02	
	淤泥质土		1.80	1.0×10^{-6}		
海河特大桥 ^[16]	粉土	2.32	7.30	2.0×10^{-6}	0.62	0.80
	淤泥质土		13.0	1.0×10^{-6}		

3 结语

水中围堰施工中,封底混凝土厚度与水头密切 相关,目前采用的计算方法较少考虑水头损失。本 文通过理论分析得到水头损失系数可以表示为水位 高度、土体高度和渗透系数的函数,其值随着水位高 度的增加而增加,渗透系数对水头损失的影响不大。 实际工程应用中,须考虑基坑中水位不能全部抽干 及底板完成后要进行回灌等实际情况综合确定相关 参数的取值。

参考文献:

- [1] 方诗圣,丁仕洪.钢围堰封底混凝土与桩基钢护筒间的 粘结力研究[J].合肥工业大学学报,2009,32(2): 241-244.
- [2] 王明慧,陈永亮,李开兰,等.大水位差下钢吊箱围堰封 底混凝土厚度优化设计[J].世界桥梁,2020,48(5): 6-9.
- [3] 黄铮.基于单壁钢套箱围堰封底混凝土厚度的研 究[D].长沙:长沙理工大学,2019.
- [4] 赫宏伟.黄河机场特大桥基础钢板桩围堰水下封底混 凝土设计及施工[J].中外公路,2019,39(1):121-125.
- [5] 郭成刚.深水大直径双壁钢围堰封底混凝土厚度设计 与施工技术[J].铁道建筑技术,2015(3):63-66.
- [6] 张静.围堰封底混凝土厚度设计[J].铁道建筑技术,

(上接第127页)

- [3] 俞先林,张瑗媛.预应力混凝土连续梁桥悬臂施工模糊 控制技术[J].中外公路,2003,23(2):43-45.
- [4] 杨磊.铁路特大桥预应力连续梁桥悬臂施工控制研究[J].智能城市,2021,7(24):143-144.
- [5] 贺铁飞.多跨预应力混凝土连续梁桥施工控制关键问题研究[D].武汉:武汉理工大学,2007.
- [6] 宋福春,张兴,陈冲,等.大跨预应力混凝土连续梁桥悬 臂施工结构控制分析[J].沈阳建筑大学学报(自然科

2012(8):34-36.

- [7] 陈俊生,莫海鸿,刘叔灼,等.坑内降水过程中模袋砂围 堰变形规律研究[J].地下空间与工程学报,2017, 13(4):1122-1128.
- [8] 梁居翔,曹洪.临江高水头深厚砂层基坑盲沟排水渗流 分析[J].地下空间与工程学报,2013,9(4):871-877.
- [9] 陈健.某临江超深基坑工程降水计算与设计分析[J].地 下空间与工程学报,2009,5(6):1355-1360.
- [10] 李光明,李明生.悬挂式止水帷幕基坑降水控制措施研 究[J].地下空间与工程学报,2020,16(3):921-932.
- [11] 李飞,徐劲,张飞,等.渗流作用下深基坑开挖抗隆起 破坏数值模拟[J].地下空间与工程学报,2017, 13(4):1088-1097.
- [12] 王洪新.水土压力统一计算理论的证明及水土共同作 用下的压力计算[J].岩石力学与工程学报,2012, 31(2):392-398.
- [13] 孙博文.超长拉森钢板桩在桥梁主墩承台深基坑支护 中的应用[D].武汉:华中科技大学,2019.
- [14] 毛昶熙.堤防工程手册[M].北京:中国水利水电出版 社,2009.
- [15] 陈华实.颍河特大桥深水基础钢板桩围堰设计[J].安徽建筑,2013,20(2):123-125.
- [16] 杜闯,丁红岩,张浦阳,等.钢板桩围堰有限元分析[J]. 岩土工程学报,2014,36(S2):159-164.

收稿日期:2022-07-27

学版),2017,33(2):226-234.

- [7] 窦文林,安康月.高速公路特大桥预应力连续梁桥悬臂 施工控制研究[J].公路工程,2019,44(3):112-116.
- [8] 董旭, 蔚龙祥, 路军, 等. 预应力混凝土连续梁桥温度-挠度试验研究[J]. 公路工程, 2016, 41(3):198-202.
- [9] 肖勇刚,彭江.斜拉桥施工过程中温度对主梁的影响效应分析[J].公路与汽运,2022(6):91-94.

收稿日期:2022-12-08