高性能防裂三合料抗裂性能试验研究

李辉¹,黄坤²,柳多思¹,周绪冬¹,黄拓²,江帆¹ (1.长沙市工务局,湖南长沙 410013;2.长沙理工大学,湖南长沙 410114)

摘要: 为提高三合料基层的抗裂性能,在三合料基层中加入不同掺量聚丙烯纤维,先通过弯拉试验确定聚丙烯纤维最优掺量;然后对掺加聚丙烯纤维的三合料进行抗压试验、劈裂试验,并与未掺加聚丙烯纤维的三合料进行对比,结果表明,添加 0.2%聚丙烯纤维可显著提升三合料的抗拉能力及劈裂性能,提高其抗裂能力。

关键词:公路;三合料;聚丙烯纤维;抗裂性能

中图分类号:U416.1

文献标志码:A

文章编号:1671-2668(2019)05-0068-03

三合料基层性能优越,在道路工程中应用广泛。 但三合料为半刚性材料,对其进行干缩时易出现问 题,使沥青路面的使用能力大大减弱、道路使用年限 减少。聚丙烯纤维中的纤维可使裂开的水泥层块产 生牵连反应,可用于水泥基体裂纹修补。Serfass J. P.指出在基材中加入纤维能改良沥青路面的裂缝情 况:A. Bentur 等认为聚丙烯纤维在控制早期塑性收 缩方面比较高效,低掺量纤维的加入对塑性裂纹的 扩展没有明显影响;曹锐等提出纤维增强聚合物 FRP 具有极高的抗拉强度和很强的耐腐蚀性能,能 替代部分钢筋,但其昂贵的价格和脆性妨碍了其广 泛使用;唐朝生等指出纤维对土和半刚性材料的改 良作用机理相似,在半刚性材料中掺入纤维,可提高 纤维与无机结合料的粘聚力和摩阳力,抑制半刚性 材料的脆性破坏,增强半刚性基层的抗拉能力;马银 华等将聚丙烯纤维加入半刚性基层,提高其抗变形 能力;梁磊等对纤维的阻裂机理进行研究,认为纤维 的桥接和加筋作用能抑制三合料裂纹的扩展。该文 研究聚丙烯纤维的最佳掺量,分析高性能三合料的 抗裂性能。

1 原材料

1.1 石灰与粉煤灰

试验用石灰中氧化钙和氧化镁的含量为55.64%, 粉煤灰的性能检测结果见表1,均满足规范要求,可

表 1 粉煤灰的性能检测结果

项目	测试结果	项目	测试结果
0.075 mm 筛孔通过率	77.00	Fe ₂ O ₃ 含量	8.18
SiO ₂ 含量	53.61	SO ₃ 含量	1.70
AL ₂ O ₃ 含量	21.42	烧矢量	5.31

用作高性能防裂三合料的原材料。

1.2 聚丙烯纤维

聚丙烯纤维是一种合成纤维,其弹性模量较低,抗酸碱能力强,这是其与其他玻璃纤维及聚酯纤维相比的最大优势,且其重量比二者轻很多。聚丙烯纤维很易出现大的蠕变,即使复合材料出现裂缝,纤维还是能承载绝大部分应力并进行正常工作,且可持续一段时间。试验用聚丙烯纤维的性能指标见表 2。

表 2 聚丙烯纤维的关键指标参数

项目	参数值	项目	参数值
比重	0.91	弹性模量/MPa	5 023
断裂延伸率/%	22	抗拉强度/MPa	540
熔点/℃	168		

1.3 集料与矿粉

粗集料采用石灰岩,细集料采用机制砂,填料采用矿粉,其技术指标见表3、表4。

表 3 集料的压碎值指标

试样	试样	试验后筛余	压碎	值/%
编号	质量/g	质量/g	试验结果	规范要求
1	2 638	2 090	20.8	
2	2 638	2 052	22.0	€30
3	2 638	2 073	21.4	

表 4 矿粉的技术指标

检验项目	检验结果	技术要求
表观相对密度	2.71	≥2.50
含水量/%	0.33	€1
亲水系数	0.62	€1
加热安定性	无变化	实测

1.4 三合料级配

对于骨架密实型三合料基层材料,集料最大颗粒直径应在 $26.5~\mathrm{mm}$ 以下,且其重量占比为 $80\%\sim85\%$,以保证其骨架支撑功能。集料合成级配见表 5.6

表 5 三合料的合成级配

级配类型	通	过下列	筛孔(mm)的	质量百	「分率/	′%
级癿矢型	19	9.5	4.75	2.36	1.18	0.6	0.075
上限	98.0	70.0	50.0	38.0	27.0	20.0	7.0
下限	81.0	52.0	30.0	18.0	10.0	6.0	0.0
中值	89.5	61.0	40.0	28.0	18.5	13.0	3.5
合成级配	96.4	62.6	38.5	26.8	17.2	12.0	2.5

按照 JTJ 034 - 2000《公路路面基层施工技术规范》的要求,设定石灰、粉煤灰、集料的重量比为 5 : 12.5 : 82.5。

2 高性能三合料中聚丙烯纤维掺量确定

为使聚丙烯纤维在三合料中分布匀称,先将其和石灰、粉煤灰等搅拌均匀,再放入集料中搅拌。混合料中没有纤维成团情况,则说明聚丙烯纤维在三合料中已彻底分散。测试不同聚丙烯纤维掺量(0、0.1%、0.2%、0.3%)下 28 d 时三合料的弯拉强度,结果见表 6 和图 1。

表 6 不同聚丙烯纤维掺量下三合料弯拉强度检测结果

纤维掺量/		各	·试件弯拉引	虽度 R _s /Ml	R_s 平均	标准差/	变异	$R_{{ m s0.95}}$ /		
%	1	2	3	4	5	6	值/MPa	MPa	系数/%	MPa
0.0	0.328	0.401	0.304	0.377	0.299	0.397	0.351	0.04	0.13	0.27
0.1	0.418	0.387	0.481	0.405	0.458	0.413	0.427	0.03	0.08	0.37
0.2	0.398	0.465	0.413	0.501	0.469	0.449	0.449	0.04	0.08	0.39
0.3	0.413	0.394	0.431	0.472	0.463	0.513	0.448	0.04	0.09	0.38

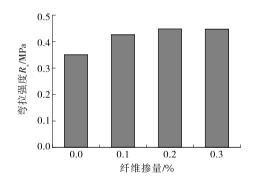


图 1 不同聚丙烯纤维掺量三合料的弯拉强度

由表 6 和图 1 可知: 28 d 时,加入聚丙烯纤维的 三合料的弯拉强度整体上比未加聚丙烯纤维的三合 料高,掺量为 0.2%时抗弯拉强度提升效果非常明显,提升 27.9%,可称为高性能防裂三合料。纤维掺量超 0.2%时,三合料的强度增加不很显著。在普通 三合料中加入纤维,当三合料内部有细微裂缝时,由 于裂缝前端和纤维相交,缝长大于间距时纤维可起 到牵连作用,使其内部应力场更均匀,在一定程度上 阻止细微裂缝增大,从而提高材料的弯拉性能。

3 高性能三合料的性能

3.1 击实试验

对高性能防裂三合料进行击实试验,测试其干

密度和含水量,根据试验结果绘制击实曲线,曲线峰值即为最大干密度 ρ_{dmax} ,其对应的含水量即为最佳含水量,试验结果见表 7 和图 2。根据试验结果,高性能防裂三合料的最大干密度为 $2.13~g/cm^3$,最佳含水量为 8.1%。

表 7 高性能防裂三合料干密度与含水量的关系

干密度/	含水量/	干密度/	含水量/
$(kg \cdot m^{-3})$	0/0	(kg • m ⁻³)	%
2 050	6	2 088	9
2 103	7	2 041	10
2 130	8		

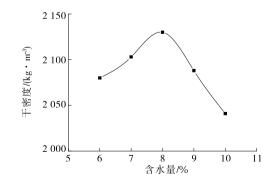


图 2 高性能防裂三合料的标准击实曲线

3.2 抗压强度

对高性能三合料和普通三合料进行抗压强度测试,结果见表8和图3。

米切 松钿/』			各试件抗压强度 R _c /MPa						标准差/	变异系	$R_{ m c0.95}$ /
类别 龄	龄期/d	1	2	3	4	5	6	值/MPa	MPa	数/%	MPa
	7	1.09	0.96	0.82	1.07	0.83	0.99	0.96	0.11	10.91	0.78
普通	14	0.97	1.24	1.17	1.18	0.99	1.17	1.12	0.10	9.13	0.95
三合料	28	2.48	2.75	2.85	2.61	2.28	2.51	2.58	0.11	6.32	2.40
	60	4.47	3.81	4.28	3.56	3.86	4.08	4.01	0.31	9.12	3.51
古 Mr Ar	7	0.98	1.16	0.89	1.01	0.97	1.11	1.02	0.09	8.84	0.87
高性能	14	1.29	1.18	1.16	1.19	1.11	1.21	1.19	0.05	4.63	1.11
防裂	28	2.74	2.37	2.98	2.66	2.52	2.81	2.68	0.17	9.12	2.40
三合料	60	4.59	4.13	3.76	4.17	3.55	4.22	4.07	0.33	8.20	3.52

表 8 高性能防裂三合料与普通三合料抗压强度测试结果

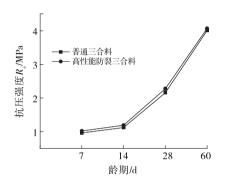


图 3 不同龄期普通三合料和高性能防裂三合料的抗压强度

由表 8 和图 3 可知:虽然掺加聚丙烯纤维对三合料抗压强度的提升效果有限,但其强度还是略有增加。聚丙烯纤维的主要作用是提升三合料的抗拉性能,对抗压强度提升不明显。

3.3 劈裂强度

半刚性基层在路面结构中主要承受弯拉应力, 劈裂试验作为一种间接拉伸试验,其测试结果可用 于评定材料的抗拉强度。高性能三合料和普通三合 料的劈裂强度试验结果见表 9 和图 4。

由表9和图4可知:掺加聚丙烯纤维对提升三

米則	龄期/d		各试件劈裂强度 R _i /MPa						标准差/	变异系	$R_{_{ m i0.95}}/$
类别 龄期/	欧别/u	1	2	3	4	5	6	值/MPa	MPa	数/%	MPa
	7	0.204	0.166	0.167	0.178	0.199	0.166	0.182	0.02	8.71	0.15
普通	14	0.214	0.268	0.224	0.260	0.216	0.258	0.241	0.02	9.30	0.20
三合料	28	0.421	0.377	0.392	0.316	0.373	0.401	0.383	0.03	10.72	0.32
	60	0.579	0.588	0.491	0.469	0.516	0.537	0.530	0.04	8.23	0.46
高性能	7	0.281	0.227	0.219	0.236	0.274	0.263	0.251	0.02	9.51	0.21
防裂	14	0.341	0.369	0.322	0.301	0.326	0.321	0.332	0.02	6.31	0.29
	28	0.492	0.513	0.438	0.418	0.482	0.477	0.471	0.04	9.92	0.40
三合料	60	0.672	0.626	0.718	0.594	0.607	0.623	0.643	0.05	7.40	0.56

表 9 高性能防裂三合料与普通三合料劈裂强度测试结果

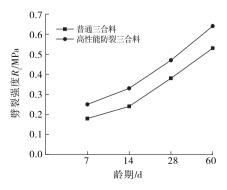


图 4 不同龄期普通三合料与高性能防裂三合料的劈裂强度

合料劈裂强度的效果显著,随龄期增加,强度增长幅度降低。聚丙烯纤维和三合料之间有粘着连接和摩擦连接,当三合料基层由于受到荷载作用出现变形时,纤维及集料反应生成团粒,发生摩擦作用产生摩擦力,使纤维和基体之间出现内聚力,相当于给混合料整体一个约束,因而在荷载作用下劈裂强度显著提升。

4 结论

(1) 在三合料中添加不同比例聚丙烯纤维,其 (下转第 103 页)

表 10	E2 ±	也震作	用下关	键截面剪力	ı
------	------	-----	-----	-------	---

	师	桥向剪力	横桥向剪力		
位置	抗震体	隔震体	减少	抗震体	隔震体
	系/kN	系/kN	率	系/kN	系/kN
1 主墩墩顶	3 491	3 179	0.09	2 652	3 005
2#主墩墩顶	3 170	2 897	0.09	2 544	2 843
1 * 主墩墩底	3 857	3 696	0.04	3 039	3 563
2 * 主墩墩底	3 495	3 406	0.03	3 263	3 391
1 = 主墩桩顶	1 057	1 025	0.03	948	1 012
2#主墩桩顶	1 452	1 427	0.02	1 253	988

分截面的内力响应增大,这是由于隔震体系横桥向 支座位移减小明显。

由于横桥向初始屈服弯矩较大,仅对 E2 地震作用下顺桥向各关键截面弹塑性进行判断,结果见表 11。

表 11 E2 地震作用下顺桥向各关键截面弹塑性判断

位置	墩身最大弯	初始屈服弯	能力/	是否
12. 直.	矩/(kN·m)	矩/(kN·m)	需求	通过
1	70 518	95 278	1.35	是
2 # 主墩	65 279	95 278	1.46	是
1 * 主墩桩顶	2 471	11 939	4.83	是
2 # 主墩桩顶	4 471	11 939	2.67	是

从表 11 可看出: E2 地震作用下,结构各关键截面均处于完全弹性状态,隔震体系主梁位移和顺桥向内力响应相比抗震体系有所减小;隔震体系横桥向部分截面内力增大,但由于横桥向初始屈服弯矩较大,内力增大量可以接受。

(上接第70页)

弯拉能力都得到提高,但掺量超过0.2%时对三合料 抗拉性能的改良效果不明显。

(2) 在三合料中加入 0.2%聚丙烯纤维,28 d 弯拉强度相比未掺加纤维的三合料提高 27.9%,7、14、28、60 d 劈裂强度分别提高 38.8%、37.5%、23.7%、20.7%。在三合料基层中添加聚丙烯纤维可提高其抗裂性能。

参考文献:

- [1] Serfass J P.Application and behavior of fiber modified asphalt[J].AAPT,1995,64.
- [2] A Bentur, N S Berke, M P Dallaire, et al. Crack mitigation effects of shrinkage reducing admixtures [A]. Symposium on Design and Construction Practices to Miti-

3 结论

- (1) E1 和 E2 地震作用下,无论是设置抗震体系还是隔震体系,桥梁各关键截面都处于完全弹性阶段,满足设防目标要求。
- (2) 采用隔震体系时,桥梁顺桥向主梁位移、各 关键截面弯矩和剪力都降低,桥梁结构更加安全。
- (3)采用隔震体系,主梁位移减少,可减小伸缩缝宽度。

参考文献:

- [1] 刘延芳,叶爱君.减隔震技术在桥梁结构中的应用[J]. 世界地震工程,2008,24(2).
- [2] 袁涌,魏威,谭平,等.一种基于改进超弹性 Zener 模型的高阻尼橡胶隔震支座速度相关性本构模型[J].土木工程学报,2016,49(3).
- [3] 陈长海.高承载力隔震支座的力学性能初步研究[J].世界桥梁,2017,45(4).
- [4] 张永亮,卢肖素,陈兴冲,等.高烈度区实体双薄壁矮墩连续刚构桥抗震设计「JT.铁道工程学报,2017,34(11).
- [5] 何波,朱宏平,李俊,等.大跨薄壁墩连续刚构桥抗震性能分析[J].华中科技大学学报:城市科学版,2006,23
- [6] 王占飞,庞辉,李帼昌,等.基于 Pushover 分析的刚构 桥抗震设计方法研究[J].工程力学,2012,29(增刊 2).
- [7] JTG/T B02-01-2008,公路桥梁抗震设计细则[S].

收稿日期:2019-05-21

- gate Cracking[C].2001.
- [3] 曹锐,岳清瑞.连续纤维复合材料及其发展历程[J].工业建筑,2001,31(9).
- [4] 唐朝生,施斌,高玮.聚丙烯纤维和水泥对粘性土强度的影响及机理研究[J].工程地质学报,2006,15(1).
- [5] 马银华,张广,易志坚,等.聚丙烯纤维半刚性基层材料 弯曲韧性试验研究[J].重庆交通大学学报:自然科学版,2007,26(4).
- [6] 于晖.合成纤维混凝土抗裂性能分析[J].安徽建筑, 2007(2).
- [7] 梁磊,赵文,李艺,等.增强纤维的加入对混凝土抗冲击性能的影响[J].混凝土与水泥制品,2007(1).
- [8] JTG E51-2009,公路工程无机结合料稳定材料试验 规程[S].

收稿日期:2019-04-02