紧邻既有地铁高架桥梁深基坑施工开挖方案研究

唐鹏

(中国铁路设计集团有限公司华南公司,广东深圳 518052)

摘要:以深圳地铁大运枢纽站为背景,通过建立三维有限元数值模型,综合考虑水土压力及支 护体系的相互作用,对比整体开挖和分部开挖两种工况,分析深大基坑工程建设对紧邻地铁线路 变形的影响,并采取相应措施控制变形,降低施工风险。结果表明,在地铁保护范围内的相邻基坑 工程,二次开挖扰动引起的累积叠加变形大于整体开挖变形,不利于既有高架桥梁的运营安全。 关键词:地下工程;深基坑;高架桥梁;变形控制;开挖方案

中图分类号:U455 文献标志码:A 文章编号:1671-260

随着城市地下空间资源的大量开发利用,建设 工程逐步向深基坑、大规模、复杂化趋势发展。复杂 环境下深大基坑工程施工中,邻近深大基坑工程的 周边建(构)筑物安全是一个研究热点,深大基坑自 身变形控制、地层预加固措施等是重要研究方向,选 用新型机械设备、优化支护体系是控制基坑及周边 地层变形的重要手段。该文采用 MIDAS/GTS 有 限元软件,针对深圳地铁大运枢纽站基坑工程建立 三维数值模型,分析比较整体开挖和分部开挖工况 下深大基坑施工对既有高架桥梁结构变形的影响, 并选用合理可靠的机械设备及支护体系提高施工质 量,减小对既有桥梁结构变形的影响。

1 工程概况

深圳市大运城市综合交通枢纽地处龙岗区大运 新城片区,车站位于龙岗大道与龙飞大道交叉口西 南侧,沿龙岗大道西侧呈南北向布置。该站为14、 16号线同台同向换乘、地下3层双岛四线车站,全 长372m;车站基坑标准段宽62.1m,深25.5m;基 文章编号:1671-2668(2020)02-0136-05

坑东侧紧邻既有地铁3号线高架车站及区间承台桩 基,车站主体结构外轮廓与承台桩基水平净距为 3.6~5.6 m。为完善大运新城片区路网结构,缝合 城市空间,优化龙岗大道两侧慢行系统,将大运枢纽 片区范围内的龙岗大道下沉,以分离过境交通。龙 岗大道下沉隧道为单向三车道,宽15 m,内部净高5 m;西侧下沉隧道与14、16号线车站平面共通道,位 于车站负二层标高,该部分下沉隧道与车站主体结 构合建,剩余部分独立建设(见图1、图2)。

图 1 大运枢纽站、西侧下沉隧道与高架桥梁 横剖面(单位:m)

图 2 大运枢纽站与龙岗大道下沉工程平面布置(单位:m)

受车站周边建(构)筑物征拆制约,车站仅小里 程盾构始发段(67 m)可先期施工。为预留后期龙 岗大道下沉道路实施条件,车站需同期施作 75 m 长龙岗大道下沉隧道(近车站端),确保后建工程施 工期间对 14 号线荷坳—大运高架区间结构的干扰 在可控范围内,满足工程安全性要求(见图 3)。

图 3 基坑工程平面示意图(单位:m)

车站小里程端基坑地层条件较差,从上至下依次为素填土、粉质黏土、粉细砂层(厚4.0~6.0 m), 基底为粉质黏土或全~强风化砂岩。既有3号线荷 坳一大运高架区间承台桩基为端承摩擦桩,桩径1.5 或1.2 m,桩长32.8~45.0 m,地层从上到下依次为 素填土、粉质黏土、全~强风化泥质砂岩。

综合考虑明挖基坑规模、周边环境、地质及水文 条件、施工安全、投资、工期等因素,明挖基坑东侧围 护结构采用直径1.5 m、间距1.15 m 全荤咬合桩,基 坑南侧、西侧围护结构采用直径1.2 m、间距0.9 m 荤素咬合桩,北侧围护结构采用直径1.2 m、间距 1.5 m钻孔灌注桩,桩间采用直径0.8 m、间距1.5 m 旋喷桩止水;桩长32.5~34.5 m,嵌入底板以下 7.0~9.0 m。

2 基坑开挖工况

大运枢纽站小里程端与16号线折返线区间、14 号线坳背一大运区间、龙岗大道下沉隧道相接,结合 线路中心间距、埋深及周边环境等因素,16号线折 返线区间采用明挖法施工,14号线坳背一大运区间 采用盾构法施工,同期建设的龙岗大道下沉隧道采 用明挖法施工。按照轨道交通14号线全线工筹安 排,大运枢纽站为坳背一大运区间盾构始发站,提供 盾构双始发条件,故车站小里程端基坑与龙岗大道 下沉隧道同期建设段明挖基坑同步实施。根据《地 铁运营安全保护区和建设规划控制区工程管理办 法》中运营安全保护区和建设规划控制区工程管理办 法》中运营安全保护区和建设规划控制区范围,大运 形。选取以下两种基坑开挖工况,分析基坑开挖过 程中围护结构、既有高架桥梁的变形特性:

(1)整体开挖工况。车站小里程端盾构始发段 (负三层)与16号线折返线区间(负三层)、龙岗大道 下沉隧道同期建设段(负二层)并为一个基坑进行整 体施工。车站基坑竖向设置4道钢筋砼桁架支撑, 支撑水平间距6.0 m,车站基坑中间设置3根临时 钢立柱;区间基坑竖向设置2道钢筋砼桁架支撑,折 返线区间局部增设第3道钢支撑,砼支撑水平间距 6.0 m,钢支撑水平间距3.0 m,区间基坑中间设置2 根临时钢立柱(见图4)。

图 4 基坑整体开挖范围示意图

(2)分部开挖工况。车站小里程端盾构始发段 (负三层)与龙岗大道下沉隧道同期建设段(负二层) 并为一个基坑进行整体施工,随后施作 16 号线折返 线区间(负三层)。车站基坑竖向设置 4 道钢筋砼桁 架支撑,支撑水平间距 6.0 m,车站基坑中间设置 3 根临时钢立柱;下沉隧道基坑竖向设置 2 道钢筋砼 桁架支撑,砼支撑水平间距 6.0 m;折返线区间基坑 竖向设置 2 道钢筋砼桁架支撑+1 道钢支撑,砼支 撑水平间距 6.0 m,钢支撑水平间距 3.0 m(见图 5)。

图 5 基坑分部开挖范围示意图

3 有限元数值分析

对车站盾构始发段、下沉隧道、折返线区间基坑 采用 MIDAS GTS 有限元软件建立三维模型,对两 种开挖工况下基坑围护结构及高架桥梁结构变形进 行分析。

3.1 有限元数值模型

基坑全长142 m,形状异形,基坑四周围护结构 刚度不一致,需按照整体空间问题进行考虑。为考 虑三维空间中结构和土体之间的相互作用,基坑横 向、纵向均取 2.5 倍基坑深度,模型宽度取 400 m, 长度取 850 m,深度取 80 m(见图 6)。土层本构采 用修正摩尔一库伦模型,结构采用弹性模型,模型侧 面施加法向约束,底部设置为固结。

(a) 整体开挖工况

图 6 基坑施工数值分析计算本构模型

模型中土体采用实体单元;围护结构咬合桩等 效成墙厚,采用板单元模拟;桥桩、墩柱、轨道结构及 基坑支撑、冠梁、腰梁采用梁单元模拟:桥梁承台结 构采用实体单元模拟。支护体系及桥梁结构有限元 模拟见图 7。

图 7 基坑与高架桥梁数值分析计算本构模型

3.2 模型地质参数

根据中国铁路设计集团有限公司发布的《深圳

市城市轨道交通14号线工程详细勘察阶段岩土工 程勘察报告》提供的岩土体及结构物理力学指标建 议值,结合工程实际情况并进行其他工程类比,对计 算中涉及的岩土体与结构物理力学参数进行取值 (见表1、表2)。

表1 岩土体物理力学参数

十体举别	重度/	压缩模	泊松	粘聚力	摩擦角
<u>工作</u> 久加	$(kN \cdot m^{-3})$	量/MPa	比	/MPa	/(°)
素填土	18.9	4.0	0.29	15.0	14.0
砾砂	20.0	25.0	0.26	0.0	32.0
粉质黏土	18.5	5.1	0.30	22.0	15.0
全风化	18.8	6.0	0.26	24.5	20.3
土状强风化	19.0	9.0	0.25	24.0	26.0
块状强风化	22.0	15.0	0.21	45.0	35.0
中风化岩	26.5	25.0	0.20	1 000.0	38.0
微风化岩	27.0	40.0	0.20	2 000.0	40.0

表 2 支护结构物理力学参数

支护结构	材料	重度/ (kN・m ⁻³)	弹性模量 /MPa	泊松 比
砼支撑、腰梁、 围护桩	C30 砼	25.0	30 000	0.2
钢支撑、临时格构 柱、轨道梁	型钢	78.5	206 000	0.2

4 计算结果分析

4.1 基坑周边土层位移

如图 8 所示,整体开挖、分部开挖工况下,近高 架桥梁侧土层最大沉降分别为 5.54、7.44 mm。土 层沉降最大值均出现在高架桥梁承台四周,呈口字 形分布。由于分部开挖对土层的二次扰动,土层位 移在叠加效应作用下普遍较大。但两种工况下土层 沉降值均在变形控制范围内。

4.2 基坑围护结构变形

如图 9 所示,整体开挖、分部开挖工况下,近高 架桥梁侧围护结构最大水平位移分别为 5.76、 7.04 mm。围护结构最大变形出现在第三道支撑 (0.5H~0.7H)上下,围护结构变形整体呈现"中 凸"趋势。两种工况下围护结构变形均较小,在《深 圳市基坑支护技术规范》允许范围内。

图 9 基坑施工引起的围护结构水平位移云图(单位:m)

4.3 高架桥梁桩基及轨面变形

如图 10~12 所示,整体开挖工况下,高架桥梁 承台最大沉降为 3.5 mm、最大水平位移为 1.5 mm, 桩基最大沉降为 4.3 mm、最大水平位移为 3.2 mm, 3 号线轨面最大沉降为 1.3 mm,分部开挖工况下, 高架桥梁承台最大沉降为 4.3 mm、最大水平位移为 2.8 mm,桩基最大沉降为 5.8 mm、最大水平位移为 4.1 mm,3 号线轨面最大沉降为 2.3 mm。根据《地 铁运营安全保护区和建设规划控制区工程管理办 法》中地铁设施安全控制指标要求,桥面、桥墩结构 水平、竖向位移控制值为5mm,纵向每10m轨道 高低、轨向变形控制值为4mm,两种开挖工况下既 有结构变形均在规范允许范围内。但分部开挖工况 下结构变形较大,不利于既有3号线运营安全。

(a) 整体开挖工况

(b) 分部开挖工况

图 10 基坑施工引起的桥梁承台及桩基

竖向位移云图(单位:m)

(a) 整体开挖工况

(b) 分部开挖工况

图 11 基坑施工引起的桥梁承台及桩基 水平位移云图(单位:m)

(b) 分部开挖工况

两种开挖工况下基坑周边土层、围护结构及既 有结构变形见表 3。

表 3 基坑两种开挖工况优缺点对比

工况	对既有线的影响	其他
整体 开挖	地铁线路轨面沉降为1.3 mm,高架桥梁承台最大水平 位移为1.5 mm,最大沉降量 为3.5 mm,在地铁设施安全 控制指标允许范围内	地铁线路轨面最大沉降 为 2.3 mm,高架桥梁承 台最大水平位移为 2.8 mm,最大沉降量为 4.3 mm,接近地铁设施安全 控制指标限值
分 部 开 挖	减少1排区间明挖围护桩; 增加自然形成空间面积,可 用作商业开发冷水机房及 环控机房布置	增加1排区间明挖围护 桩;后建工程需考虑对 先建工程的保护措施, 不利于整体工期及投资

综合考虑场地条件、道路交通疏解、管线迁改、 工程投资等因素,基坑整体开挖工况更合理,有利于 既有地铁线路的运营安全。

5 主要控制措施

(1)施工设备选型。根据深圳地铁安全运营相关办法和规定,邻近地铁线路的工程项目,施工设备起降高度均不能高于桥面,以免影响列车行车视线造成紧急停车,引发乘客及行车安全;同时既有高架桥梁基础为端承摩擦桩,对地层较敏感。为减小近高架桥梁侧围护结构成桩对周边地层的扰动,并满足低净空成桩场地条件,选用施工噪音小、无震动、

安全性高、垂直度易保证、施工工效高的全套管全回 旋钻机,其高度仅 2.8 m。

(2)加强支护设计。深大基坑开挖引起的自身 变形是工程控制重点和难点。为控制基坑开挖过程 中周边土层变形,近高架桥梁侧围护结构采用直径 1.5 m、间距1.15 m全荤咬合桩(硬咬合),基坑内支 撑均采用砼支撑,提高围护结构及支护体系的刚度。

(3)预处理及信息化施工。1)在既有高架桥 梁承台四周埋设袖筏管,对承台周边土体进行挤密 注浆,水泥浆压力控制在 H/(100 MPa);预留袖阀 管进行跟踪补偿注浆,水泥浆压力控制在(1~4)H/ (100 MPa)。2)进行信息化施工,加强施工期间主 体基坑支护结构及周边环境的施工监测,同时在既 有地铁 3 号线结构上布置沉降、位移及倾斜监测点 对轨面、轨距进行监测(见图 13、图 14)。

图 13 既有高架桥梁自动化监测点布置(高架车站)

结合,所得结果比传统证据理论更准确。

(3) 重庆开州区地下综合管廊建设一期项目的 施工安全风险为中等,与工程实际吻合度较高,验证 了该量化模型的正确性与可实践性,可为项目的顺 利进行提供有力保障。

参考文献:

- [1] 杜修力,张雪峰,张明聚,等,基于证据理论的深基坑工 程施工风险综合评价[J].岩土工程学报,2014,36(1).
- [2] 何忠明,刘可,付宏渊,等.基于集对可拓粗糙集方法的 高边坡爆破施工安全风险评价[J].中南大学学报:自 然科学版,2017,48(8).
- [3] 刘艳宇.L 市综合管廊 PPP 项目风险管理研究 [D].北 京:北京交通大学,2018.
- [4] 张胜昔,陈为公,王会会,等,基于 G-FAHP 的深基坑 施工风险评价[J].土木工程与管理学报,2016,33(5).
- [5] 李大波, 孟明明, 杨献军, 等. 地下综合管廊 PPP 项目风 险管理研究[J].工程建设与设计,2019(9).
- 「6] 有维宝,王建波,张樵民,等.基于 TOPSIS-UT 的城 市地下综合管廊 PPP 项目风险分担[J].土木工程与管 理学报,2019,36(2).
- [7] 马世骁,石小玉,杨明泽,全生命周期视角下综合管廊 PPP项目风险识别与分配[J].沈阳建筑大学学报:社

(上接第140页)

6 结语

邻近地铁线路的基坑工程施工的重点和难点在 于控制基坑围护结构施工及开挖过程中的变形。在 地铁保护范围内的相邻基坑工程,二次开挖扰动引 起的累积叠加变形大于整体开挖变形,不利于既有 高架桥梁的运营安全。可在既有高架桥梁下方采用 全套管全回旋工艺施工围护桩,满足低净空场地条 件,同时应用全套管设备降低对周边地层的扰动。

参考文献:

- [1] 伍尚勇,杨小平,刘庭金.双侧深基坑施工对紧邻地铁 隧道变形影响的分析[J].岩石力学与工程学报,2012, 21(增刊1).
- [2] 贾瑞华.隧道施工对不同基础类型桥梁的影响评价及 工程应用[D].长沙:中南大学,2010.
- [3] 石钰锋,阳军生,白伟,等,紧邻铁路偏压基坑围护结构 变形与内力测试分析[J].岩石力学与工程学报,2011, 30(4)
- 「4] 梁发云,褚峰,宋著,等.紧邻地铁枢纽深基坑变形特性

会科学版,2018,20(5).

- [8] 李寿国,周文珺,基于 PPP 模式的地下综合管廊项目风 险分担机制分析[J].安全与环境学报,2018,18(3).
- 「9] 陈雍君,李宏远,汪雯娟,等,基于贝叶斯网络的综合管 廊运维灾害风险分析[J].安全与环境学报,2018,18(6).
- 「10] 向阳,史习智.证据理论合成规则的一点修正[J].上海 交通大学学报,1999,33(3).
- 「11] 王姣,范科峰,莫玮.基于模糊集和 DS 证据理论的信息 安全风险评估方法[J].计算机应用研究,2017,34(11).
- 「12〕 申建红,盖立庭,万索妮,等.基于模糊集与改进证据 理论的深基坑施工风险评价[1].土木工程与管理学 报,2019,36(2).
- 「13〕 盖立庭.基于模糊集与改进证据理论的深基坑施工风 险管理研究[D].青岛:青岛理工大学,2018.
- 「14〕 朱嘉.城市综合管廊安全风险辨识及评价体系研究 [D].重庆:重庆交通大学,2017.
- 「15] 莫冬华,张耀文,蒋田勇.基于预应力锚索支护的综合 管廊深基坑施工监测研究[1].公路与汽运,2019(5).
- [16] 刘柯汝.城市地下综合管廊的施工安全风险评价[J]. 价值工程,2018(31).
- 「17〕 赵玉茁,卢卫军,张兴民,等.城市地下综合管廊的施 工安全风险评价[J].居舍,2019(2).

收稿日期:2019-11-12

离心模型试验研究[J].岩土力学,2012,33(3).

- [5] 吴薪柳.复杂基坑施工对相邻地铁车站沉降的影响分 析[J].铁道工程学报,2017,34(2).
- [6] 安玉红.CSM 水泥土搅拌隔离桩在地铁基坑紧邻桥桩 时的保护效果研究[J].铁道标准设计,2017,61(5).
- [7] 冯国健.紧邻深大长基坑的地铁结构保护对策与实践 [J].隧道建设,2018,38(1).
- [8] 深圳市地铁集团有限公司.地铁运营安全保护区和建 设规划控制区工程管理办法 [EB/OL]. https://max. book118. com/html/2018/0805/5114232101001304. shtm, 2018-08-05.
- [9] 中国铁路设计集团有限公司.深圳市城市轨道交通 14 号线工程详细勘察阶段岩土工程勘察报告[R].深圳: 中国铁路设计集团有限公司,2017.
- [10] SJG 05-2011,深圳市基坑支护技术规范[S].
- 「11] 卞佳,闫文亮.滨海复杂地层高承压水区域悬索桥锚 碇深基坑施工技术[J].公路与汽运,2017(5).
- 「12】 张秀烽.基于 Geo-studio 的基坑分步开挖围护桩力矩 和锚索轴力变化特征分析[J].公路与汽运,2015(6).

收稿日期:2019-07-23