近山区高速公路沥青路面 GAC-16 上面层 压实度控制方法研究

梁俊怡

(广东冠粤路桥有限公司,广东 广州 511450)

摘要: 压实度是高速公路沥青路面质量控制重点指标。文中在分析近山区高速公路气候、交通特点和路面质量病害特征的基础上,分析各类控制图应用于高速公路沥青路面压实度控制的适用性,提出基于小批量 $\overline{X}-S$ 控制图的压实度控制方法;将该控制方法应用于广东大潮(大埔—潮州)高速公路,结果表明,该高速公路 GAC—16 上面层压实度合格率为 100%,顺利通过交工验收。

关键词:公路;高速公路;压实度;质量控制;GAC-16上面层;近山区

中图分类号: U418.6

文献标志码:A

文章编号:1671-2668(2022)02-0080-04

中国高速公路路面结构以沥青路面为主,目前沥青路面施工工艺较成熟,但施工控制仍是薄弱环节,尤其是对压实度的施工过程控制,采用的质量控制方法仅停留在控制点与标准指标比对阶段,没有建立系统的压实度控制方法。另外,近山区气候多变,路线线形走向复杂,增加了近山区沥青路面压实度不合格的风险。

对于沥青路面施工过程控制,江苏省交通部门根据 AASHTO R9 理念,建立了以控制图分析为基础的质量控制方法;华南理工大学提出了全面质量控制理念,构建了以压实度为重要控制指标的质量控制框架;同济大学根据沥青路面施工等级,提出了以变异系数控制施工质量的方法。现有研究提出了此变异系数控制施工质量的方法。现有研究提出了施工过程质量控制理念和基本方法,但未考虑气候、地形和施工特性,不能对近山区高速公路沥青路面压实度控制提供指导。该文结合广东大潮(大埔一潮州)高速公路沥青路面 GAC—16 上面层,研究以小批量X—S 控制图进行压实度控制的方法。

1 近山区高速公路特点及沥青路面质量病 害特征

1.1 近山区高速公路气候、地形和交通特点

近山区是指地理位置接近海岸线但地形包含绵延起伏的山丘、变化复杂的陡坡、深沟等的地区。以广东省近山区为例,年太阳总辐射量为 $4~000\sim5~200~\mathrm{MJ/m^2}$,年最低气温为 $-2\sim10~\mathrm{C}$,最高气温为 $35\sim40~\mathrm{C}$,年均降雨量为 $1~800\sim2~500~\mathrm{mm}$,降雨极为丰沛。交通组成主要以重载货运为主。综

上,近山区高速公路的气候、地形和交通具有高温、路线线形复杂和重载的特点。

1.2 GAC-16 上面层的质量病害特征

如图 1 所示,近山区高速公路的主要病害为车辙、坑槽、透水。造成这些病害的原因很多,其中一个重要原因是施工压实度不足。因此,施工过程中采用合适的控制方法保证压实度满足要求十分重要。

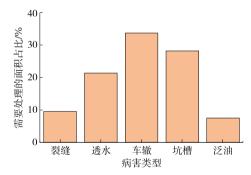


图 1 近山区某高速公路路面病害统计

2 GAC-16 上面层压实度控制方法的确定

分析各类控制图的适用范围和压实度检测的特点,研究控制图对压实度控制的适用性,确定适用于 沥青路面压实度控制的方法。

2.1 控制图类别和适用范围

- (1)累积和控制图。该控制图利用目标值和样本统计量差值的累积和对过程进行检查,利用累积信息反映过程中的微小变动,适用于控制和检测生产过程中的微小变动。
- (2) 指数加权移动平均控制图。该控制图利用 指数平滑的移动平均值对生产过程进行评估和检

查,其主要优点是容易操作和建立,缺点是对正态性假设不敏感,为达到理想效果还需和观测量一同使用,适用于生产过程细小波动的控制。

- (3)模糊控制图。模糊控制图主要利用模糊信息对生产过程进行评估和检查,能解决无法量化的指标质量控制问题,适用于只能给出模糊信息的生产过程控制。
- (4) 小批量生产控制图。该控制图采用样本均值和标准差对生产过程进行评估和检查,其主要优点是不需要历史信息且所需样本量较少。目前多品种、小批量的生产模式越来越多,小批量生产模式下的质量控制越来越重要。

2.2 压实度检测特点

- (1) GAC-16 上面层铺筑厚度为 4.5 cm,混合料总量较少,属于小批量生产。压实度检测是破坏性试验,采集的样本数据有限。
- (2)上面层多采用机械化施工,施工速度较快,对 GAC-16 沥青路面施工进行过程质量控制的方法应具有简单、快捷的实施性和可操作性,达到实时控制的目的。
- (3) 压实度控制受气候条件、交通状况等影响较大,各高速公路的控制值大多不一样,其他地区沥青路面施工质量控制参数对近山区 GAC-16 沥青路面上面层压实度控制没有参考性,即历史参考数据较少。
- (4)上面层施工受制于现场施工条件,一般与中、下面层等交叉施工,每次上面层施工的批量作业规模有限,满足小批量生产的特点;施工中常和其他结构层施工交叉进行,属于多品种生产模式。

综上,近山区 GAC-16 沥青路面施工过程属于典型的小批量生产模式,可采用小批量 $\overline{X}-S$ (均值-标准差)控制图方法对其压实度进行过程控制。

3 基于小批量X-S 控制图的压实度控制方法

3.1 小批量 $\overline{X}-S$ 控制图

在X-S 控制图中,样本服从正态分布,根据 3σ 原则建立 \overline{X} 图控制限如下:

$$UCL = \mu + 3\sigma \tag{1}$$

$$CL = \mu$$
 (2)

$$LCL = \mu - 3\sigma \tag{3}$$

实际应用中普遍用样本均值 \overline{X} 和S估计值代替,则 \overline{X} 图控制限转化为:

$$UCL = \overline{\overline{X}} + A_3 \overline{S} \tag{4}$$

$$CL = \overline{\overline{X}}$$
 (5)

$$LCL = \overline{\overline{X}} - A_3 \overline{S} \tag{6}$$

$$UCL = B_4 \overline{S} \tag{7}$$

$$CL = \overline{S}$$
 (8)

$$LCL = B_3 \overline{S} \tag{9}$$

式中:UCL 为 \overline{X} — S 控制图中控制上限;CL 为 \overline{X} — S 控制图中中心限;LCL 为 \overline{X} — S 控制图中控制下限; \overline{X} 为各组检测结果平均值的平均值; \overline{S} 为各组检测结果标准差的平均值; A_3 、 B_3 、 B_4 为由样本量n的大小决定的计量值控制图系数,其值通过查阅计量值控制图系数表得到。

3.2 压实度控制方法

上述控制方法适用于小批量生产模式。但路面工程压实度控制有着自身的控制标准,按照 JTG F40—2004《公路沥青路面施工技术规范》,压实度代表值存在下限值。结合压实度检测与控制要求,提出如下压实度控制方法:

(1) 基于小批量 $\overline{X} - S$ 控制图,将 \overline{X} 控制图分为合格区、预警区和不合格区 3 个区域(见图 2),将 S 控制图分为预警区和合格区 2 个区域(见图 3)。

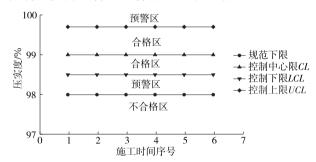


图 2 基于小批量 \overline{X} -S 控制图的压实度 \overline{X} 控制分区

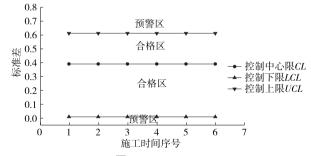


图 3 基于小批量 $\overline{X}-S$ 控制图的压实度 S 控制分区

(2) 计算压实度检测结果的平均值、代表值和标准差,确定压实度代表值是否处于控制图的不合格区,分析平均值和标准差在X和S控制图中的分布情况。

(3) 根据压实度检测结果平均值、代表值和标准差在X和S图中的分布情况,按照表1进行评估后,采取控制措施进行分级控制。

表 1 基于小批量 \overline{X} -S 控制图的压实度控制评估标准一

检查项目	评估结果	控制措施		
\overline{X}	合格区	施工过程正常,继续施工作业		
	预警区	施工存在波动,分析波动原因,		
		及时作出施工调整		
	不合格区	停工检查,对不合格段采取处理措施		
S	预警区	施工存在波动,分析波动原因,		
		及时作出施工调整		
	合格区	施工过程正常,继续施工作业		

(4) 若压实度检测结果在 \overline{X} 和 S 控制图中存在 预警区测点,则查看 \overline{X} 和 S 控制图中是否出现链式 或周期性预警区波动,按照表 2 进行评估后,采取控制措施进行分级控制。

表 2 基于小批量 $\overline{X}-S$ 控制图的压实度控制评估标准二

检查项目	评估结果			
\overline{X}	链式或周期性	施工过程异常,停工检查		
	预警区波动			
	点式波动	施工存在波动,分析波动 原因,及时作出施工调整		
S	链式或周期性 预警区波动	施工过程异常,停工检查		
	点式波动	施工存在波动,分析波动 原因,及时作出施工调整		

4 工程应用

4.1 工程概况

大潮高速公路起于梅州市大埔县大麻镇,终于潮州市饶平县钱东镇,地处广东省东北部,属南亚热带季风区。大埔县常年雨水充沛,年日照 3 000~4 500 h,年降雨量 1 500~2 100 mm,年平均气温21~22 ℃,最低气温在 0 ℃以上;最高气温 36~40℃。该项目沿线大部分为低山、深沟和丘陵地貌,终点饶平县钱东镇附近有部分剥蚀残丘。饶平县位于海洋性热带季风区,海岸线全长 136 km,有柘林、高沙、大埕 3 个较大海湾。项目周边常年重载车辆多,流量大,交通荷载等级为重载交通荷载。综上,大潮高速公路属于典型的近山区高速公路。

该项目主线采用双向四车道高速公路标准,根据不同线形,设计速度分别为 100、120 km/h。主线沥青路面结构层总厚度 88 cm,上面层采用 4.5 cm

改性沥青 GAC-16。

4.2 压实度控制方法

上面层采用 2 台 13 t 双钢轮振动压路机静压 1 遍(初压) +2 台 30 t 轮胎压路机振压 2 遍(复压) +1 台 13 t 双钢轮振动压路机静压 1 遍(终压)的碾压方式,初压速度为 $2 \sim 3$ km/h,复压速度为 $3 \sim 4$ km/h,终压速度为 $4 \sim 6$ km/h。

根据施工检测数据,对压实度数据进行分组分析。由于每天检测的路段长度不等,检测数据的个数也不相等,取 2020 年 11 月 10—16 日之间 6 个施工日的压实度检测结果(见表 3)进行分析,样本数 n=6。

表 3 大潮高速公路压实度检测结果 %

样本号	X_1	X_2	X_3	X_4	X_{5}	$X_{\scriptscriptstyle 6}$
1	98.2	99.2	98.4	98.8	99.7	98.9
2	97.1	98.4	98.2	98.3	98.4	98.2
3	98.8	99.8	99.1	99.4	99.8	98.5
4	98.6	98.8	99.5	99.5	98.7	99.7
5	99.8	99.2	98.6	99.2	99.4	99.6
6	99.5	98.5	99.4	99.8	98.6	99.9

对表 3 中数据进行处理,得到表 4。

表 4 大潮高速公路压实度检测结果分析 %

样本号	样本的平均值	标准差	代表值
1	$\overline{X}_1 = 98.9$	$S_1 = 0.54$	$K_1 = 98.4$
2	$\overline{X}_2 = 98.1$	$S_2 = 0.50$	$K_2 = 97.7$
3	$\overline{X}_3 = 99.2$	$S_3 = 0.53$	$K_3 = 98.8$
4	$\overline{X}_4 = 99.1$	$S_4 = 0.48$	$K_4 = 98.7$
5	$\overline{X}_5 = 99.3$	$S_5 = 0.41$	$K_5 = 99.0$
6	$\overline{X}_6 = 99.2$	$S_6 = 0.71$	$K_6 = 98.6$
平均值	$\overline{X} = 99.0$	$\overline{S} = 0.53$	_

查计量值控制图系数表,n=6 时, $A_3=1.287$, $B_3=0.030$, $B_4=1.162$ 3。 \overline{X} 图控制限转化为:

$$UCL = \overline{\overline{X}} + A_3 \overline{S} = 99.0 + 1.287 \times 0.53 = 99.7$$

$$CL = \overline{\overline{X}} = 99.0$$

$$LCL = \overline{X} - A_3 \overline{S} = 99.0 - 1.287 \times 0.53 = 98.3$$

根据施工规范要求,压实度不得小于 98%。运用小批量施工控制图得到的质量控制界限见图 4。

 \overline{S} 图控制限转化为:

$$UCL = B_4 \overline{S} = 1.162 \ 3 \times 0.53 = 0.62$$

$$CL = \overline{S} = 0.53$$

$$LCL = B_3 \overline{S} = 0.030 \times 0.53 = 0.02$$

由此计算得到的 S 控制图见图 5。

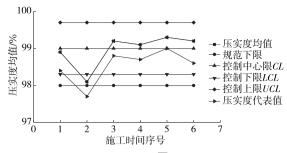


图 4 压实度 X 控制图

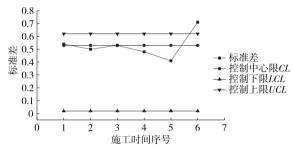


图 5 压实度 S 控制图

由图 4 可知:6 个施工日中,第 2 个施工日的压实度偏移较大,超出控制下限 LCL,压实度代表值已低于规范要求的最低值 98%,处于不合格区,根据表 1,应停工检查,对不合格段采取处理措施。但在图 5 中,第 2 个施工日的压实度处于正常范围。因此,对第 2 施工日的施工情况进行检查,发现当天的出料温度偏低,同时遇到粤东山区极端局部气候,施工中出现了局部降雨,气温下降较快,造成摊铺温度较低,影响了压实度控制。施工单位对压实度不合格段进行铣刨重铺处理,并汲取教训,后续施工中提高出料温度,保证后续施工段落压实度合格。

由图 5 可知:第 6 个施工日的压实度标准差处于预警区,应分析波动原因,及时作出施工调整。但第 6 施工日的 \overline{X} 值满足控制图要求,处于 \overline{X} 的合格区。因此,对第 6 个施工日的压实度数据进行进一步分析,发现第 6 施工日 X_2 和 X_5 2 组数据存在显著的变异性。检查发现,因检测人员操作不当,造成

数据误差较大。第6施工日的压实度变异性大是由 人为因素造成的,需加强操作人员技术交底和管理。

6个施工日的压实度检测结果的平均值和标准 差在 \overline{X} 和 S 图均未呈链式或周期性波动,说明施工 过程正常,可继续进行施工。交工验收时压实度检 测合格率为 100%,顺利通过交工验收。

5 结论

- (1) 近山区高速公路的主要环境和交通特点为 夏季高温、路线线形复杂、交通荷载以重载为主,其 主要病害为车辙、坑槽和透水,压实度不足是造成这 些病害的重要原因之一。压实度控制是近山区高速 公路路面施工的关键控制指标。
- (2) 基于小批量 $\overline{X} S$ 控制图建立预警区、合格区和不合格区进行压实度控制,能实现压实度的动态控制,确保压实度满足要求。

参考文献:

- [1] 黄丽芳.山岭重丘区 SMA 沥青路面施工过程质量控制 机理及方法研究[D].重庆:重庆交通大学,2015.
- [2] 涂裕民.沥青路面施工质量管理方法研究[D].西安:长安大学,2011.
- [3] 李立寒,赵鸿铎,曹林涛.沥青面层施工质量变异性的特征[J].公路交通科技,2006,23(2):27-31.
- [4] 王丽颖.小批量工序质量控制方法及若干关键技术的 研究[D].大连:大连交通大学,2007.
- [5] 刘军,冯五一.高温多雨山区高速公路沥青路面设计与施工[J].交通标准化,2009(19):162-165.
- [6] 孙贻国.沙漠公路施工的控制与管理[J].筑路机械与施工机械化,2018,35(10):108-111+117.
- [7] 王增学,靳秀萍.沙漠公路路基施工与质量控制[J].筑路机械与施工机械化,2001,18(3):38-39.

收稿日期:2021-09-10

(上接第79页)

the Overlay Tester(OT)[J].Construction and Building Materials, 2015, 93;695-702.

- [9] NEVES J, LIMA H, GONCALVES M.A numerical study on the implications of subgrade reinforcement with geosynthetics in pavement design[J]. Procedia Engineering, 2016,143;888-895.
- [10] NORAMBUENA-CONTRERAS J, GONZALEZ-TORRE
- I,FERNANDEZ-ARNAU D, et al. Mechanical damage evaluation of geosynthetics fibres used as anti-reflective cracking systems in asphalt pavements[J]. Construction and Building Materials, 2016, 109:47—54.
- [11] YI Chao Jue, PENG Cheng Zhai. Application of fiberglass-polyester paving mat in engineering[J]. Advanced Materials Research, 2012, 488—489; 485—489.