DOI: 10.20035/j.issn.1671-2668.2022.03.031

某预应力砼单塔三跨双索面斜拉桥荷载试验与评定

王翔

(佛山市公路桥梁工程监测站有限公司,广东 佛山 528041)

摘要:以佛山市某预应力单塔双索面斜拉桥为例,采用 MIDAS/Civil 软件对各工况进行模拟计算,确定桥梁荷载效率;通过静载试验、动载试验测试试验荷载作用下控制截面的变形、应力、应变和索力,分析桥梁结构实际工作状态,并与理论计算结果进行对比,分析桥梁结构是否达到设计及规范要求。

关键词:桥梁;斜拉桥;单塔双索面;荷载试验

中图分类号: U446.1

文献标志码:A

文章编号:1671-2668(2022)03-0130-05

1 工程概况

某预应力砼单塔双索面斜拉桥,主桥桥跨布置为(56+94+180) m。主桥采用 H 形砼桥塔,为塔梁固结体系,桥塔处固结,辅助墩、过渡墩顶设纵向、双向活动支座。主塔塔身由塔座、下塔柱、下塔柱横梁、中塔柱、上塔柱、上塔柱横梁等组成。引桥为简支体系,先简支后桥面连续。每侧桥面布置 52 根斜拉索,全桥共 104 根。

2 桥梁结构计算

采用桥梁分析软件 MIDAS/Civil 建立该独塔 双索面预应力砼斜拉桥有限元模型(见图 1),通过 控制截面试验数据与理论计算数据对比分析,根据 《公路桥梁荷载试验规程》对桥梁承载能力及工作状 态进行评价。

图 1 全桥 MIDAS/Civil 计算模型

通过软件计算试验荷载作用下各工况试验弯矩,并与控制值比较,获得试验荷载效率(见表 1)。在满足试验要求的前提下尽可能减少加载量,适当合并加载工况。采用单车总重 $P=350~{\rm kN}$ 的车辆加载,荷载试验控制截面布置见图 2,荷载效率取值为 $0.85\sim1.05$ 。

表 1 荷载试验控制截面荷载效率

主要测试对象	控制截面	控制值	试验值	试验荷载效率
第 10 跨主梁	A 截面最大正弯矩	26 064 kN • m	25 442 kN • m	0.976
9 # 墩顶	B截面最大正弯矩	15 370 kN • m	13 774 kN • m	0.896
9 墩坝	B截面最大负弯矩	−22 683 kN • m	$-22753 \text{ kN} \cdot \text{m}$	1.003
10 # 墩顶	C截面最大负弯矩	−28 234 kN • m	$-24~337~\mathrm{kN} \cdot \mathrm{m}$	0.862
第 11 跨主梁	D截面最大挠度	69.33 mm	71.41 mm	1.030
第 11 跨主梁	E截面最大正弯矩	51 992 kN • m	46 782 kN • m	0.900
10 # 主塔	F截面主塔根部最大弯矩	38 397 kN • m	35 569 kN • m	0.926
数 11 	G截面最大索力增量			
第 11 跨拉索	(P16、P17、P18 拉索)	_	_	_
10 # 主塔	M 截面主塔最大偏位	23.26 mm	22.44 mm	0.965
边跨梁端	N截面梁端最大水平位移	2.65 mm	2.35 mm	0.887

注:B截面、D截面、F截面、M截面、N截面和最大索力G截面为合并加载工况。

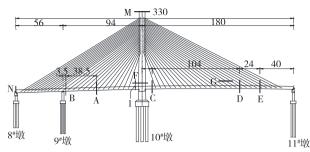


图 2 荷载试验控制截面位置示意图(单位:m)

3 桥梁静载试验分析

3.1 挠度

挠度测点沿试验桥跨两侧的支点位置、1/4 位置和跨中位置布置,主跨测点在 1/8 位置和控制截面加密布置(见图 3)。

控制截面实测挠度与理论计算挠度见表 2。其中校验系数 $\eta = S_e/S_s$,相对残余 $\Delta S_p = S_p/S_t \times 100\%$ 。

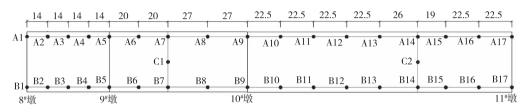


图 3 挠度测点布置(单位:m)

表 2 实测挠度与理论计算挠度比较

控制截面及工况		实测挠度/mm			校验系数 η	相对残余
1年 門 戦 囲 汉 上 九	最大值 St	卸载值 $S_{\scriptscriptstyle \mathrm{P}}$	弹性值 S_e	挠度 $S_{ m s}/{ m mm}$	仅业尔奴 /	$\Delta S_{\mathrm{p}}/\sqrt[9]{_{0}}$
A 截面最大正弯矩中载	10.61	0.45	10.15	12.53	0.810	5.3
A截面最大正弯矩偏载	13.66	-0.70	14.36	16.92	0.849	-5.2
D截面最大挠度中载	61.34	-2.15	63.49	71.40	0.889	-3.5
D截面最大挠度偏载	71.88	-1.37	73.25	81.40	0.900	-1.9

由表 2 可知: A 截面最大正弯矩中载、偏载实测挠跨比分别为 0.010 $15/94=1.08\times10^{-4}$ 、0.014 $36/94=1.53\times10^{-4}$ (见图 4、图 5),D 截面最大挠度中载、偏载实测挠跨比分别为 0.063 $49/180=3.53\times10^{-4}$ 、0.073 $25/180=4.07\times10^{-4}$,均小于 $1/500=2.0\times10^{-3}$,满足规范要求。

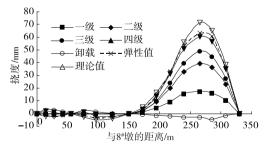


图 4 A 截面实测挠度与理论计算挠度比较

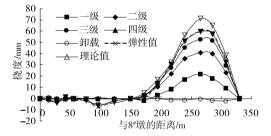


图 5 D 截面实测挠度与理论计算挠度比较

3.2 应变

在 A、B、C 截面布设 18 个应变测点, E 截面布设 20 个应变测点, 塔脚布设 20 个应变测点(见图 6、图 7), 测试各截面的应变, 结果见表 3。

由表 3 可知:除 B 截面最大正弯矩偏载工况外,其他截面工况下应变效验系数均满足规范中预



图 6 主梁应变测点布置(单位:cm)

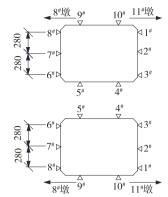


图 7 塔脚应变测点布置(单位:cm)

应力砼桥应变校验系数为 $0.60\sim0.90$ 、相对残余应变《20%的要求。B 截面最大正弯矩偏载截面底板弹性应变均值 S_e 为 $13.7~\mu\epsilon$,理论应变 S_s 为 $23.9~\mu\epsilon$,应变校验系数 $\eta=S_e/S_s=0.573<0.60\sim0.90$,不满足要求;最大应变均值 S_t 为 $15.7~\mu\epsilon$,对应残余应变 S_p 为 $2.0~\mu\epsilon$,相对残余应变 $\Delta S_p=S_p/S_t\times100\%=12.7\%$ 《20%,满足要求。B 截面最大正弯矩偏载应变见图 8。

如图 9 所示,拟合中性轴高度为 172.40 cm,与 理论计算值 209.00 cm 的相对误差为 17.51%,实测

表 3 实测应变与理论计算应变比较

校判港孟丑工归		实测应变/με			拉办石料。	相对残余
控制截面及工况	最大值 S _t	卸载值 S _p	弹性值 S。	应变 $S_{ m s}/\mu$ ϵ	校验系数 η	$\Delta S_{ m p}/\sqrt[9]{_0}$
A 截面最大正弯矩中载	42.8	0.20	42.6	51.0	0.835	0.5
A 截面最大正弯矩偏载	54.2	1.20	53.0	67.3	0.788	2.2
B截面最大负弯矩中载	-29.0	-3.30	-25.7	-37.2	0.691	11.4
B截面最大正弯矩中载	16.0	2.20	13.8	22.5	0.613	13.8
B截面最大正弯矩偏载	15.7	2.00	13.7	23.9	0.573	12.7
C截面最大负弯矩中载	-31.4	-1.00	-30.4	-35.2	0.864	3.2
E截面最大正弯矩中载	57.8	0.40	57.4	88.9	0.646	0.7
E截面最大正弯矩偏载	73.1	2.60	70.5	101.3	0.691	3.6
F截面最大正弯矩中载	-9.2	-0.60	-8.6	-12.3	0.699	6.5
F截面最大正弯矩偏载	13.0	2.13	-10.8	-14.8	0.729	16.4

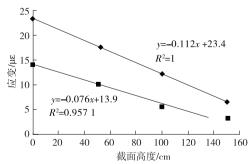



图 8 B 截面实测最大应变与理论计算应变比较

◆理论值 ■实测值 ──线性(理论值) ──线性(实测值)

图 9 最大试验荷载作用下实测应变沿截面高度的分布

拟合中性轴高度比理论计算中心轴高度低;最大试验荷载作用下,实测应变沿截面高度呈线性变化,线

性相关系数r为 0.978 3,符合平截面假定(n=4,置 信度大于 95%)。

3.3 主塔塔顶、主梁梁端水平位移

在主塔塔顶布置位移测点 T1、T2,并安装一个 棱镜,采用徕卡 TM50 全站仪观测塔顶位移。主梁 梁端布置水平位移测点 N1、N2,采用百分表测量梁 端位移(见图 10)。试验荷载作用下塔顶实测水平位移见表 4,主梁梁端实测水平位移见表 5。

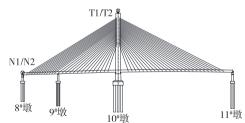


图 10 主塔塔顶、主梁梁端水平位移测点布置

表 4 塔顶实测水平位移与理论计算位移比较

			nn.t. () /			13.74	to a took
अवत . हि	- • •	测位移/r		理论计算	D + 4	1111 4 224	
	测点	最大值	卸载值	弹性值	位移/mm	系数	余/%
	T1	19.70	-1.30	21.00	22.44	0.936	-6.6
	T2	20.30	0.13	20.17	22.44	0.899	0.6

表 5 主梁梁端实测水平位移与理论计算位移比较

测压	实测水平位移/mm			理论计算	校验
测点	最大值	卸载值	弹性值	位移/mm	系数
N1	2.42	0.07	2.35	2.65	0.887

注:N1 为桥面梁端左幅测点;N2 测点损坏,无数据。

由表 4 可知:塔顶水平位移测点 T1、T2 的实测 弹性变形均值 S_e 为 20.59 mm,对应理论计算变形 S_s 为 22.44 mm,校验系数 $\eta = S_e/S_s = 0.917$,满足 挠度校验系数为 0.70~1.00 的要求;实测最大水平 位移均值 S_t 为 20.00 mm,对应残余挠度 S_p 为

-0.59 mm,相对残余挠度 $\Delta S_p = S_p / S_t \times 100\% = -3.0\% \le 20\%$,满足要求。

由表 5 可知:试验工况下主梁梁端 M 截面无显著纵向位移。

3.4 最大索力

测试主跨 P16~P18 拉索(位于第 11 跨)的索力,左右各 3 根。在拉索上安装索力传感器,采用振动法测试试验荷载作用下索力增量,并与 MIDAS/Civil 计算索力增量进行对比。实测索力增量与计算索力增量见表 6,最大索力工况安全系数见表 7。

表 6 实测索力增量与理论计算索力增量比较

拉索编号 -		索力增量/kN						校验	相对残
14系細分	一级	二级	三级	四级	卸载值	弹性值	力增量/kN	系数	余/%
Z-P16	141.6	254.1	295.2	378.0	30.2	364.7	355.2	1.023	8.0
Z-P17	133.0	205.2	277.9	340.6	10.2	302.6	340.2	0.889	3.0
Z-P18	144.6	234.5	268.4	347.9	44.3	263.3	318.6	0.826	12.7
Y-P16	101.8	517.9	360.2	402.0	20.3	324.7	355.2	0.914	5.1
Y-P17	93.5	166.8	400.1	261.7	-41.3	269.9	340.2	0.793	-15.8
Y-P18	98.9	154.2	254.4	299.2	-43.7	358.0	318.6	1.124	-14.6

注: Z表示左侧拉索,Y表示右侧拉索。

表 7 最大索力工况安全系数

满载索力增量/kN	设计成桥索力/kN	最大索力/kN	拉索设计抗拉值/kN	安全系数
378.0	5 674	6 052.0	15 489	2.56
340.6	5 551	5 891.6	15 489	2.63
347.9	5 688	6 035.9	15 489	2.57
402.0	5 674	6 076.0	15 489	2.55
261.7	5 551	5 812.7	15 489	2.66
299.2	5 688	5 987.2	15 489	2.59
	378.0 340.6 347.9 402.0 261.7	378.0 5 674 340.6 5 551 347.9 5 688 402.0 5 674 261.7 5 551	378.0 5 674 6 052.0 340.6 5 551 5 891.6 347.9 5 688 6 035.9 402.0 5 674 6 076.0 261.7 5 551 5 812.7	378.0 5 674 6 052.0 15 489 340.6 5 551 5 891.6 15 489 347.9 5 688 6 035.9 15 489 402.0 5 674 6 076.0 15 489 261.7 5 551 5 812.7 15 489

注:最大索力=满载索力增量+设计成桥索力;安全系数=拉索设计抗拉值/最大索力。

从表7可看出:最大试验荷载作用下,Z-P17、Y-P17拉索的索力增量略大于理论值(拉索实测索力的安全系数大于 2.6),其余拉索的索力增量符合规范要求。

4 桥梁动载试验

4.1 脉动试验

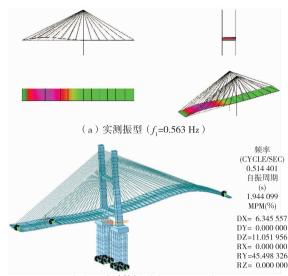

该桥为直桥,桥梁以竖向振动为主。全桥共布置26个测点(包括1个参考点),分9批次进行振动信号采集。拾振器尽量避免布置在理论计算振动的节点位置。主桥振动测试结果见表8,振型见图11。

表 8 主桥结构自振频率及振型测试结果

阶次	实测频率/Hz	理论频率/Hz	阻尼比	振型特征
1 阶	0.563	0.514	0.229	竖弯
2 阶	1.184	1.096	0.651	竖弯
3 阶	1.380	1.353	0.614	竖弯
4 阶	2.166	1.800	0.265	竖弯

4.2 受迫振动试验

(1) 无障碍行车试验。采用 2 辆约 35 t 的重车 匀速并排通过桥面,利用跨中布置的振动测点对结构振动响应进行测试。根据现场条件,采用 $10\sim50$ km/h 的行驶速度进行测试。不同速度下冲击系数见表 9。由表 9 可知:在 $10\sim50$ km/h 行车速度下,

(b) 理论计算振型 (f_1 =0.514 Hz)

图 11 竖向 1 阶振型对比

速度/	$f_{ m dmax}/$	$f_{ m dmin}$ /	冲击	理论冲
$(km \cdot h^{-1})$	mm	mm	系数	击系数
10	9.516	9.978	0.025	0.05
20	9.609	9.609	0.005	0.05
30	9.054	8.962	0.008	0.05
40	8.685	8.777	0.013	0.05
50	8.926	8.869	0.009	0.05

注: f_{dmax} 为最大动挠度幅值; f_{dmin} 为与 f_{dmax} 对应的挠度波谷值。

第 11 跨实测冲击系数均小于理论冲击系数,结构冲击效应无明显异常。

(2) 有障碍行车试验。采用弓形板模拟桥面坑洼进行有障碍行车试验。采用 2 辆约 35 t 的重车匀速并排同步越过桥面测试截面 7 cm 高的弓形板,利用跨中布置的振动测点对结构振动响应进行测试。采用 10~30 km/h 的行驶速度进行测试。不同速度下冲击系数见表 10。由表 10 可知:第 11 跨在 10~30 km/h 有障碍行车试验中的最大冲击系

数为 0.042,大于无障碍行车试验的 0.025,说明桥面 坑槽、不平顺等会加大车辆对桥梁的冲击作用。

表 10 有障碍行车时不同行车速度下第 11 跨冲击系数

速度/(km·h ⁻¹)	$f_{\rm dmax}/{ m mm}$	$f_{ m dmin}/{ m mm}$	冲击系数
10	5.728	6.190	0.041
20	4.435	4.527	0.015
30	5.451	5.081	0.042

5 结论

- (1)该桥在静载试验各主要控制工况下的校验 系数及残余变形、主塔塔顶水平位移、索力增量等均 满足规范要求,试验桥跨工作状况良好,主要受力构 件处于弹性工作状态。
- (2)在试验荷载作用下,试验桥跨实测振型与理论计算振型基本相符,实测频率大于理论频率,结构实际刚度大于理论刚度;实测冲击系数小于理论冲击系数,桥面平整度良好,桥跨结构在受力时抵抗弹性变形的能力强。
- (3)该桥在荷载作用下结构稳定,受力合理,工作状况正常,承载能力满足设计荷载要求。

参考文献:

- [1] 长安大学.公路桥梁荷载试验规程:JTG/T J21-01—2015[S].北京:人民交通出版社股份有限公司,2015.
- [2] 中交公路规划设计院有限公司.公路钢筋混凝土及预应力混凝土桥涵设计规范:JTG 3362—2018[S].北京:人民交通出版社股份有限公司,2018.
- [3] 刘士林,王似舜.斜拉桥设计[M].北京:人民交通出版社,2006.
- [4] 宋一凡.公路桥梁荷载试验与结构评定[M].北京:人民交通出版社,2012.
- [5] 何炳涛.独塔四索面斜拉桥交工检测中动载试验研究 「JT.公路与汽运,2022(2):133-135.

收稿日期:2021-07-14

(上接第 111 页)

- [6] 肖汝诚,郭文复.结构关心截面内力、位移混合调整计算的影响矩阵法[J].计算力学学报,1992,9(1):91-99.
- [7] 汤柠郡.型钢混凝土组合结构施工模拟分析[D].重庆: 重庆大学,2014.
- [8] 张志飞.龙湾斜拉桥索力的确定及控制[D].北京:北京工业大学,2016.
- [9] 赵光明,陈科昌.系杆拱桥调索工序时机选择[J].中南公路工程,1997,22(11):28-31.
- [10] 颜东煌,刘光栋.确定斜拉桥合理施工状态的正装迭代法[J].中国公路学报,1999,12(2):59-64.
- [11] 王鹏,吴迅,石雪飞,等.自锚式悬索桥施工控制[J].结构工程师,2008,24(1):92-95.

收稿日期:2021-06-15