Highways & Automotive Applications

DOI: 10.20035/j.issn.1671-2668.2022.06.018

基于灰色关联的山区公路线形设计影响因素分析

王振,朱星光

(中国市政工程华北设计研究总院有限公司,天津 300202)

摘要:由于山区地形、地貌及水文的特殊性,公路线形设计尤为重要。文中采用灰色关联分析法,考虑水体规模、地形特征及地质特征三项影响因素,搭建各因素对山区公路线形设计影响的灰色关联分析数学模型;选取四类典型山区公路线形,计算对应条件下不同因素对线形设计的关联程度。结果表明,山腰公路、跨岭公路、山脊公路线形与山地地形、丘陵地形、简单地质和一般地质的灰色关联程度最高,沿水公路线形受水体规模的影响最明显。

关键词:公路;山区公路;线形设计;地质;地形;灰色关联分析;关联程度

中图分类号: U412.36

文献标志码:A

文章编号:1671-2668(2022)06-0079-03

山区公路线形设计的影响因素繁杂目个性化特 征较明显,不同道路设计机构所采用的标准和设计 思路有很大差别。而山区公路线形与交通安全的相 关性显著。Xu Min 等认为山区公路圆曲线半径及 车辆行进速度对行车安全性的影响显著;Lorencik D.等考虑不同季节对山区公路车辆行驶安全性的影 响,重点考虑冬季山区各环境因素带来的各类不利 方面,认为车流量控制可有效降低冬季山区公路事 故发生率,并提出了相应设计思路;郭应时等研究山 区公路平曲线角度设置对交通事故产生带来的影 响,拟合二者的递归关系,认为平曲线角度会直接导 致交通事故发生率发生线性变化;郭忠印等分析公 路线形与交通安全的关系,以曲率、曲率变化率、曲 线转角、纵坡度、车道宽度、车道数、左右路肩宽度等 设计指标为依据建立了公路线形综合指标评价模 型;宋传平等分析了不同因素对交通事故发生的影 响程度。现有研究对山区公路安全性影响因素考虑 不全面,且较多考虑拟合不同因素与事故发生率的 各类数学模型,存在一定局限。本文采用灰色关联 分析法,考虑到水体规模、地形特征及地质特征对线 形设计的影响最深远,且其具备一定的可量化性,选 取这三项影响因素搭建山区公路线形设计影响因素 灰色关联分析数学模型,选取四类典型山区公路线 形,分别计算对应条件下不同因素对线形设计的关 联程度,确定山区公路线形设计关键影响因素。

1 灰色关联分析理论

山区公路线形设计前先设定体系行为序列:

$$\gamma(X_0, X_i) = \frac{1}{n} \sum_{k=1}^{n} \gamma(x_0(k), x_i(k))$$
 (2)

 $\gamma(X_0, X_i)$ 遵循灰色关联公理设定,用以描述 X_0 和 X_i 的灰色关联程度。对 $\gamma(X_0, X_i)$ 进行相关 计算以便进行进一步分析。计算步骤如下:

(1) 计算不同序列的初值像:

$$X'_{i} = X_{i}/x_{i}(1) = (x'_{i}(1), x'_{i}(2), \cdots, x'_{i}(n)); i = 0, 1, 2, \cdots, m$$
(3)

(2) 计算灰色关联的差序列:

$$\Delta_{i}(k) = |x'_{0}(k) - x'_{i}(k)|; \Delta_{i} = (\Delta_{i}(1), \Delta_{i}(2), \dots, \Delta_{i}(n)); i = 0, 1, 2, \dots, m$$
(4)

(3) 计算灰色关联相邻级别的最小和最大差值:

$$M = \max_{i} \max_{k} \Delta_{i}(k), m = \min_{i} \min_{k} \Delta_{i}(k)$$
(5)

(4) 计算灰色关联的关联系数:

$$\gamma_{0i}(k) = \frac{m + \xi M}{\Delta_i(k) + \xi M}; \xi \in (0,1); k = 1,2,\dots,$$

$$n; i = 0,1,2,\dots,m$$
(6)

(5) 计算灰色关联的关联程度:

$$\gamma_{0i} = \frac{1}{n} \sum_{k=1}^{n} \gamma_{0i}(k); i = 0, 1, 2, \dots, m$$
(7)

2 灰色关联分析模型建立

按照一定的分类标准分别对水体规模、地形特征及地质特征三项影响因素进行划分:1)水体规模影响因素划分为小型水体、中型水体及大型水体三类(见表 1)。2)地形特征影响因素划分为高原地形、山地地形及丘陵地形三类(见表 2)。其中高原地形包含大范围的隆起区域;丘陵地形分布有密集的山丘,其整体高度普遍较低,坡度较缓和,没有明显的起伏情况,地表整体平整度较差。3)地质特征

影响因素划分为简单地质、一般地质及复杂地质三类(见表 3)。

表 1 水体规模划分结果

水体规模	面积/m²
小型水体	<6.8×10 ⁶
中型水体	$6.8 \times 10^6 \sim 2.2 \times 10^8$
大型水体	$> 2.2 \times 10^8$

表 2 地形特征划分结果

地形特征	海拔高度/m	相对高差/m
高原地形	≥1 000	_
山地地形	500~1 000	>200
丘陵地形	$200 \sim 500$	€200

表 3 地质特征划分结果

地质特征	地貌	构造	土体结构
简单地质	分布有低丘陵和高丘陵,其中低丘陵 相对高差一般不超过 100 m,高丘陵 相对高差一般不超过 200 m,整体 坡度在 15°以下	地质活动频率较低,整体地质状态 简单清晰,基本不发生新构造运动 及地震活动,且地震活动震级不 超过6级	主要分布有砂砾土等
一般地质	分布有低山和中山,其海拔高度为 $1~000\sim3~000~m$,整体起伏高度为 $300\sim600~m$,整体坡度为 $15^{\circ}\sim30^{\circ}$	山体断裂构造及褶皱构造较发育, 存在一定新构造运动及地震活动, 地震活动震级为6~8级	主要分布有片状碳酸盐结构, 包括部分粉质黏土等
复杂地质	分布有高山和超高山,其海拔高度为 $3000\sim5000$ m,整体起伏高度超过 600 m,整体坡度基本在 30 °以上	普遍分布有山体断裂构造,褶皱构造 发育,新构造运动及地震活动发生频 率高,且地震活动震级超过8级	主要分布有片状碳酸盐结构, 包括部分粉质黏土等,还存在 部分冻土、膨胀土及淤泥等不 良土体

选定山腰公路、跨岭公路、山脊公路及沿水公路 4 种山区公路条件,按照灰色关联分析理论,定义为 $Y_j(j=1,2,3,4)$,则灰色关联综合体系的特征行为 序列为:

$$Y_j = (y_j(1), y_j(2), \dots, y_j(k)); j = 1, 2, 3, 4$$
(8)

推导出关联计算矩阵如下:

$$\gamma_{ij} = \begin{bmatrix} \gamma_{11} & \cdots & \gamma_{1n} \\ \vdots & & \vdots \\ \gamma_{m1} & \cdots & \gamma_{mn} \end{bmatrix}$$
(9)

对应关联系数为:

$$\gamma(x_i(k), y_i(k)) =$$

(10)

分辨系数 ξ 取 0.5。

3 灰色关联分析结果

依托某山区二级公路建设项目,选取其中46km作为试验段落。该项目所处山区地势崎岖,起伏不定,处于环山环境,中部及东部地区相对低平,整体从东至西地势逐渐降低。部分段落临近悬崖和各类大小不一的水体,水体受断裂和褶皱控制明显,部分段落下部分布有大范围不良土体,整体地质、地貌和水文环境非常复杂,常产生自然灾害。从中部地区向南北两侧,公路范围内存在较大高差,中部地区下部分布有密集粗粒径花岗结晶石,因风化程度差异明显,断裂发育普遍,致使周边整体呈现为丘陵或盆地。

综合该公路水体规模、地形特征及地质特征,明确四类典型山区公路线形,分别为山腰公路、跨岭公路、山脊公路及沿水公路。利用上述灰色关联分析模型,考虑水体规模、地形特征及地质特征,搭建各

因素对山区公路线形设计影响的灰色关联分析数学模型,计算不同因素对公路线形设计的关联程度,结

果见表 4、图 1~4。

从图1~4可以看出:1) 山腰公路线形主要受地

表 4 各因素对公路线形设计的关联程度

				各[因素的关联和	星度			
公路类型	水体规模			地形特征			地质特征		
	小型水体	中型水体	大型水体	高原地形	山地地形	丘陵地形	简单地质	一般地质	复杂地质
山腰公路	0.757 350	0.604 146	0.241 638	0.116 994	0.911 472	0.917 490	0.897 192	0.884 442	0.254 388
跨岭公路	0.735 114	0.661 674	0.404 736	0.207 978	0.933 912	0.857 004	0.871 794	0.911 982	0.240 312
山脊公路	0.654 126	0.439 518	0.259 896	0.149 226	0.881 484	0.915 756	0.797 844	0.860 574	0.246 330
沿水公路	0.944 418	0.959 004	0.905 148	0.224 910	0.715 530	0.836 706	0.741 948	0.526 524	0.567 936

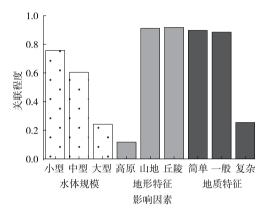


图 1 山腰公路线形与不同影响因素的关联程度

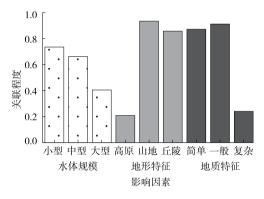


图 2 跨岭公路线形与不同影响因素的关联程度

形特征和地质特征的影响,其与山地地形、丘陵地形、简单地质和一般地质的灰色关联程度最高,与高原地形和复杂地质的灰色关联程度较低。三因素的灰色关联程度大小排序为 γ_{**bb} 大小排序为 γ_{**bb} 大小排序为 γ_{**bb} 大心,大色类联程度较低。三因素的灰色关联程度最高,与高原地形和复杂地质的灰色关联程度较低;随着水体规模的增大,灰色关联程度降低。三因素的灰色关联程度大小排序为 γ_{**bb} 特征。

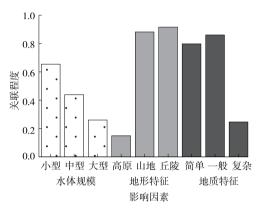


图 3 山脊公路线形与不同影响因素的关联程度

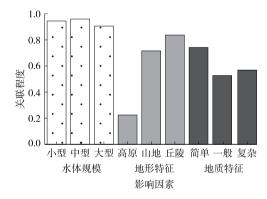


图 4 沿水公路线形与不同影响因素的关联程度

跨岭公路线形相似,受地形特征和地质特征的影响较明显,其与山地地形、丘陵地形、简单地质和一般地质的灰色关联程度最高;随着水体规模的增大,灰色关联程度降低。三因素的灰色关联程度大小排序为 $\gamma_{^{地质特征}} > \gamma_{^{地形特征}} > \gamma_{^{*kh规模}}$ 。4)沿水公路线形受水体规模影响较明显,小型、中型、大型水体的灰色关联程度均在 0.9 以上;相较于前三类线形,沿水公路线形受地形特征和地质特征的影响较小。三因素的灰色关联程度大小排序为 $\gamma_{*kh规模} > \gamma_{*kh规模} >$

(下转第87页)

Record: Journal of the Transportation Research Board, 2010,2179(1):58-65.

- [4] WILLIS J R, TURNER P, DE GOES PADULA F, et al. Effects of changing virgin binder grade and content on high reclaimed asphalt pavement mixture properties [J]. Transportation Research Record: Journal of the Transportation Research Board, 2013, 2371(1):66-73.
- [5] SIVILEVIČIUS H, VISLAVIČIUS K. Simulation of composition of recycled hot-mix asphalt mixture produced in asphalt mixing plant [J]. Construction and Building Materials, 2019, 214:17 - 27.
- [6] 姜严旭,顾兴宇,周洲.RAP 掺量对热再生沥青混合料 水温耐久性能的影响[J]. 江苏大学学报(自然科学 版),2018,39(3):368-372.
- [7] 左锋,叶奋,宋卿卿.RAP 掺量对再生沥青混合料路用 性能影响「J]. 吉林大学学报(工学版), 2020, 50(4): 1403 - 1410.
- [8] 程培峰,向银剑,李炬辉,等.RAP 粒径对热再生沥青 混合料性能的影响研究[J].重庆交通大学学报(自然 科学版),2020,39(6):81-86+91.
- [9] 曾俐豪.厂拌热再生混合料中新旧沥青扩散及 RAP 分 散特征研究[D].长沙:长沙理工大学,2019.
- [10] 张萌.不同 RAP 温度泡沫沥青冷再生混合料性能及

影响机理[J].公路工程,2016,41(4):250-255.

- [11] JAMSHIDI A, WHITE G, HOSSEINPOUR M, et al. Characterization of effects of reclaimed asphalt pavement (RAP) source and content on dynamic modulus of hot mix asphalt concrete [J]. Construction and Building Materials, 2019, 217: 487-497.
- [12] 马辉,茅荃,李宁.沥青路面厂拌热再生 RAP 料掺量 影响因素分析[J].重庆交通大学学报(自然科学版), 2020,39(9):97-104.
- 「13〕 王雪莲,胡林,黄晓明.沥青路面厂拌热再生工艺关键 技术研究[J].中外公路,2019,39(1):210-214.
- [14] IM S, KARKI P, ZHOU F J. Development of new mix design method for asphalt mixtures containing RAP and rejuvenators[J]. Construction and Building Materials, 2016, 115: 727 - 734.
- [15] ABDALFATTAH I A, MOGAWER W S, STUART K.Quantification of the degree of blending in hot-mix asphalt (HMA) with reclaimed asphalt pavement (RAP) using Energy Dispersive X-Ray Spectroscopy (EDX) analysis [J]. Journal of Cleaner Production, 2021,294:126261.

收稿日期:2022-05-26

(上接第81页)

 $\gamma_{\text{地质特征}}$ 。

结论

本文考虑水体规模、地形特征及地质特征三项 影响因素,搭建各因素对山区公路线形设计影响的 灰色关联分析数学模型。选取四类典型山区公路线 形,分别计算对应条件下不同因素对线形设计的关 联程度,得出山腰公路、跨岭公路、山脊公路线形与 山地地形、丘陵地形、简单地质和一般地质的灰色关 联程度最高,沿水公路线形受水体规模的影响最明 显。分析结果可为山区公路线形设计提供参考。

参考文献:

- [1] 刘运通.道路交通安全指南[M].北京:人民交通出版 社,2004.
- [2] 符锌砂,葛婷,李海峰,等.基于公路三维线形几何特性的 行车安全分析[J].中国公路学报,2015,28(9):24-29.
- [3] FITZPATRICK K, WOOLDRIDGE M D, TSIMHONI O, et al. Alternative design consistency rating methods for two-lane rural highways [R]. Federal Highway Admini-

- ************************* stration, 2000
 - [4] 崔洪军,魏连雨,朱敏清,等.公路平面设计中有关问题 的探讨[J].中国公路学报,2002,15(1):22-25.
 - [5] FU R, GUO Y S, YUAN W, et al. The correlation between gradients of descending roads and accident rates [J].Safety Science, 2011, 49(3): 416-423.
 - [6] XU Min, HUANG Xing, ZHANG Chi, et al. Application of fuzzy synthesis evaluation to driving safety analysis of sharp curves on mountain expressways[J]. China Journal of Highway and Transport, 2016, 29(6): 186-197.
 - [7] LORENCÍK D, MACIAKOVÁ A. Safety of personal vehicles on mountain passes during the winter period [J]. Procedia Engineering, 2017, 192:551-556.
 - [8] 郭应时,付锐,袁伟,等.山区公路事故率与平面线形的 关系[J].交通运输工程学报,2012,12(1):63-71.
 - [9] 郭忠印,杨漾,曹继伟,等.基于高速公路线形综合指标 的安全评价模型[J].同济大学学报(自然科学版), 2009,37(11):1472-1476.
 - 「10〕 宋传平,施红星,齐玉梅.基于灰色关联分析的车辆交 通事故规律研究[J].中国安全科学学报,2010,20 (8):40-43.

收稿日期:2021-10-13