DOI:10.20035/j.issn.1671-2668.2023.04.022

双层钢桁梁步履式顶推反力点偏距值分析与确定

张科龙,周胜利,刘洋

(中建三局 第一建设工程有限责任公司, 湖北 武汉 430040)

摘要: 江西赣州蟠龙大桥为三塔钢桁梁矮塔斜拉桥,主梁为倒梯形断面双层钢桁梁,主塔为钢 结构箱形断面、塔梁固结形式,为解决钢桁梁顶推必须节点受力的难点,采用钢桁梁节点自适应步 履式顶推工艺。但钢桁梁顶推工艺设计中一般重视整体结构力学性能研究,而忽略钢桁梁节点受 力性能研究。为使该工艺得到有效应用,文中采用有限元模拟技术,从各类顶推工况中找出节点 最大支反力,以此为荷载输入,对节点受力性能进行研究,在保证结构安全的原则下,确定操作性 强且简易的节点受力部位和形式。

关键词:桥梁;斜拉桥;钢桁梁;步履式顶推;临界值

中图分类号:U445.4 文献标志码:A

志码:A

文章编号:1671-2668(2023)04-0106-05

大节段提升及转移极大地提高了钢结构桥梁的 施工效率[1]。步履式顶推是顶推施工技术中较先进 的工艺,能准确、有效地将箱梁顶推就位,解决传统 拖拉顶推施工存在的问题^[2]。但如果钢桁梁质量 大,下弦杆无法直接承受支点反力,常规的步履式顶 推法不能适应钢桁梁结构受力[3]。可在钢桁梁节点 位置设置滑块,实现步履千斤顶的限压顶推^[4]。李 兆峰等采用数值模拟与现场试验相结合的方法获得 了钢桁梁顶推过程中关键节点结构的应力状态^[5]。 在千斤顶顶升过程中,由于实际顶升位置与原定位 置存在一定偏差及不完全同步顶升等施工原因,某 些节点局部区域应力水平短时间内较高,在最不利 施工工况下试验节点的最大实测应力接近材料的屈 服强度[6]。本文在总结以往顶推工艺设计经验的基 础上,分析顶推反力点偏距、反力作用板类型、反力 作用面积等因素对钢桁梁下弦杆节点力学性能的影 响,研究偏距临界值、腹板受力、抄垫板尺寸,为钢桁 梁顶推顺利实施奠定基础。

1 钢桁梁顶推工艺设计

1.1 钢桁梁结构体系

江西赣州蟠龙大桥为三塔钢桁梁矮塔斜拉桥, 全长 396 m(54 m+63 m+108 m+108 m+63 m), 跨越赣江约 300 m 河道。河道地质为薄覆盖中分 化岩层,水流速度约 0.9 m/s,最大水深约 5.6 m,通 航。双层钢桁梁最大跨径 108 m,钢桁梁高 6 m,结 构断面为倒梯形。塔高 24 m,结构断面为矩形,外 部设4 mm 装饰钢板。主桥对称布置 30 根斜拉索, 单索面。钢桁梁锚固采用叉耳式,钢塔锚固采用钢 锚箱。成桥索力为 3 648.9 kN。

钢桁梁沿桥梁纵向分为44个节段,主桁采用 2片华伦桁架(三角桁,见图1)。主桁上弦杆中心线 横向间距为17.5452m,下弦杆中心线横向间距为 15.0m;主桁斜腹杆为空间杆件,外倾15.00°;桁架 高度为4.7495m。上下层桥面中纵梁水平,上层桥 面两侧设2%横坡,上层为机动车道,下层为非机动 车道和人行道(见图2)。下弦节点为腹杆和下弦杆 交点,节点上的蝴蝶板采用整板下料,纵桥向长度为 4800mm,采用Q420qD钢板,板厚为34mm、 44mm、50mm;其他腹板采用Q345qD钢板,板厚 为28mm、46mm;底板厚度为28mm、46mm,保 证其整体性(见图3)。步履式千斤顶作用点初步选

择在节点上的蝴蝶板范围内,对其偏离节点中心最 大允许值进行研究。

图 3 整体式节点(未盖板)

1.2 钢桁梁顶推工艺

(1)拼装与顶推的工序转换形式。在北岸小里 程侧设置 90 m 拼装区、9 个顶推临时墩,由小里程 向大里程单向分 5 轮顶推就位,累计顶推距离为 339 m。第1轮拼装 74 m 钢桁梁和 30 m 导梁,顶 推 54 m;第2轮拼装 54 m 钢桁梁,将 128 m 钢桁梁 顶推 90 m;第3轮拼装 90 m 钢桁梁,将 218 m 钢桁 梁顶推 90 m;第4轮拼装 90 m 钢桁梁,将 308 m 钢 桁梁顶推 90 m,穿插拆除部分导梁;第5轮拼装 88 m 钢桁梁,将 396 m 钢桁梁顶推 15 m,穿插拆除 剩余导梁。钢塔节段放置在桥面相应位置,采用汽 车吊吊装。主桥线形调整完成后落梁,穿插拆除步 履式千斤顶。挂索,进行张拉,完成体系转换后,穿 插拆除临时墩^[7-9]。

(2)临时墩布置。全桥布置9个临时墩,由小 里程往大里程方向,临时墩之间的跨度分别为 36 m、45 m、54 m、54 m、54 m、54 m、54 m、36 m,其 中拼装区布置3个临时墩。

(3)顶推反力点布置。临时墩上设置2个支点,支点1往返运动,支点2固定不动,实现钢桁梁整体移动,并保证节点受力^[10-12]。顶推反力点偏距值见图4。

2 钢桁梁顶推工艺设计的模拟分析

2.1 计算模型

根据桥梁结构特点,采用 ANSYS 软件对顶推

过程中结构强度和支点反力进行计算分析。钢桁梁 桥面板采用 Shell181 单元模拟,桁架及导梁采用 Beam188 单元模拟,各部分装配采用共节点固结、 节点耦合及接触分析等方式模拟。建立总体计算模 型,顶推工况计算中根据不同工况约束位置及节段 长度对模型进行修改。

有限元建模中做如下假设和简化:1)有限元模 型中不体现护栏、工地连接结构,将它们视为分布质 量加载到各节点、单元上;2)板件之间的焊缝及螺 栓连接采用共节点或连接单元方式模拟,其截面参 数由单元截面参数代替;3)导梁等杆件内部的加劲 板只考虑其质量因素;4)桥梁所受风荷载以加速度 形式加载在全桥模型上。

2.2 施工荷载(见表 1)

表 1 施工 荷 载			
荷载名称	荷载类型	荷载取值	
钢梁自重 $S_{ m G1}$	永久荷载	根据设计图取值,取 83 810 kN (含主塔质量)	
导梁自重 $S_{ m G2}$	永久荷载	根据设计图取值,取1041 kN	
汽车吊 荷载 S _{Q1}	可变荷载	根据相关资料取值,取450 kN	
风荷载 S _{W1}	可变荷载	横桥向正常工作状态下, $F_g =$ 1 153 N/m;横桥向非工作状态 下, $F_g = 10$ 997 N/m。风向 上(下)吹时,正常工作状态下, $F_g = 10$ 883 N/m;非工作状态 下, $F_g = 103$ 795 N/m	

计算采用极限状态法,根据《建筑结构可靠性设 计统一标准》^[13]确定载荷组合(见表 2)。

表 2 载荷组合

计符项目	不同工况下荷载组合			
月异坝日	施工	非工作状态		
强度、稳定 性计算	$1.3S_{G} + 1.3S_{Q} + 1.5S_{W}$	$1.3S_{G} + 1.5S_{W}$		
刚度计算	$S_{\rm G} + S_{\rm Q} + S_{\rm W}$	$S_{G} + S_{W}$		

注:施工极限工況为偏载情况; $S_{G} = S_{G1} + S_{G2}$; $S_{Q} = S_{Q1}$; $S_{W} = S_{W1}$;风荷载分别考虑横桥向与竖直上(下)方向。

2.3 边界条件

计算过程中,各顶推支点设置横向约束(X向)

和竖向约束(Y向);钢梁无法克服摩擦力产生横向 滑移,尾部顶推支点设置顺桥向约束(Z向),保证计 算收敛。

2.4 钢桁梁顶推工况划分

根据钢桁梁顶推工艺,按顶推工况、非工作工

况、敏感性工况、汽车吊行走设计 25 种工况进行计 算(见表 3)。顶推工况主要考虑顶推过程的验算, 非工作工况考虑最大悬臂状态下极端天气的影响, 敏感性工况在非工作工况的基础上考虑 80 mm 强 迫位移的影响。

表 3 顶推施工主要计算工况

工况	工况编号	工况说明		
顶推工况	1	拼装 74 m 钢桁梁和导梁后进行顶推,受竖直向下风荷载作用		
	2	顶推 18 m,尾部达到最大悬臂,受竖直向下风荷载作用		
	3	顶推 27 m,头部达到最大悬臂,受竖直向下风荷载作用(危险工况)		
	4	顶推9m,尾部设备未脱离,受竖直向下风荷载作用		
	5	拼装 54 m 钢桁梁并用汽车吊拼装 18 [#] 桥塔柱 T2、T3 节段,受竖直向下风荷载作用(危险工况)		
	6	顶推 99 m,受竖直向下风荷载作用(危险工况)		
	7	拼装 90 m 钢桁梁并用汽车吊拼装 17 [#] 桥塔柱 T0、T1 节段,受竖直向下风荷载作用		
	8	顶推 90 m,受竖直向下风荷载作用		
	9	拼装 90 m 钢桁梁及 16 [#] 桥塔柱 T0、T1 节段,在 15~16 跨之间用汽车吊拼装 17 [#] 桥塔柱 T2、T3		
		节段,受竖直向下风荷载作用		
	10	顶推18m,头部达到最大悬臂,受竖直向下风荷载作用(危险工况)		
	11	顶推 40 m,受竖直向下风荷载作用		
	12	顶推18m,受竖直向下风荷载作用		
	13	顶推 12 m,拼装剩余钢桁梁,同时在 15~16 跨之间用汽车吊拼装 16*桥塔柱,受竖直向下风荷载		
	1.4			
	14	后动钢桁架坝推系统,将钢桁架整体坝推到位、全桥坝推到位,受竖直向下风何载作用		
	15	钢桁梁顶推至前端最大悬臂状态时(工况 3),遭遇 12 级台风,水平风荷载横桥向作用在钢桁梁上		
	16	钢桁梁顶推至前端最大悬臂状态时(工况 3),遭遇 12 级台风,风荷载竖直向下作用在钢桁梁上		
非工作工况	17	钢桁梁顶推至前端最大悬臂状态时(工况 3),遭遇 12 级台风,风荷载竖直向上作用在钢桁梁上		
	18	钢桁梁顶推至前端最大悬臂状态时(工况 10),遭遇 12 级台风,水平风荷载横桥向作用在钢桁梁上		
	19	钢桁梁顶推至前端最大悬臂状态时(工况 10),遭遇 12级台风,风荷载竖直向下作用在钢桁梁上		
	20	钢桁梁顶推至前端最大悬臂状态时(工况 10),遭遇 12 级台风,风荷载竖直向上作用在钢桁梁上		
敏感性工况	21	钢桁梁顶推至前端最大悬臂状态时(工况 3),前端一侧支点高 80 mm,受竖直向下风荷载作用		
	22	钢桁梁顶推至前端最大悬臂状态时(工况 3),前端一侧支点低 80 mm,受竖直向下风荷载作用		
	23	钢桁梁顶推至前端最大悬臂状态时(工况 10),前端一侧支点高 80 mm,受竖直向下风荷载作用		
	24	钢桁梁顶推至前端最大悬臂状态时(工况 10),前端一侧支点低 80 mm,受竖直向下风荷载作用		
汽车吊行走	25	工况 13 状态,汽车吊行走至拼装主塔位置,受竖直向下风荷载作用		

2.5 钢桁梁顶推工艺模拟结果

根据钢桁梁顶推工艺模拟结果,最大反力小于 1 200 t 步履式千斤顶承载力的 80%,结构应力小于 钢材的屈服强度,结构处于弹性工作状态。其中: 1)单组设备最大反力为 1 782 t,出现在工况 3。 2)钢桁梁最大应力为 169.2 MPa,出现在工况 5;最 大变形为65.6 mm,出现在工况 10。3)导梁最大应 力为 184 MPa,出现在工况 4;最大变形为 143.7 mm,出现在工况 10。4) 工况 3、工况 5、工况 6、工况 10 为最危险工况。计算结果表明,该顶 推方案满足设计要求。

3 钢桁梁节点局部模拟分析

3.1 计算模型

考虑到支点1和支点2均占据一定空间,选取 工况3进行节点反力点偏距分析。以斜腹板与下弦

109

杆交点为基点,左右偏移1m至节点边缘,采用梁 单元建立局部模型,分析下弦杆节点附近的应力变 化。节点零件材质,下弦杆节点板为Q420qD-Z25,其余为Q345qD。考虑到竖向力传递由腹板完 成,选择下弦杆腹板节点板作为反力作用板件,采用 规范公式对其局部稳定性进行验算。为避免节点板 局部发生塑性变形,将集中力扩散为线荷载,在每块 腹板节点板下设置750mm×300mm 抄垫钢板。

3.2 计算结果

3.2.1 结构受力

应力计算结果见图 5~7。由图 5~7可知:偏 距为 0 时,von mises(米赛斯)应力最大值为 202.599 MPa;左偏距为 1 m时,von mises应力最 大值为 234.325 MPa;右偏距为 1 m时,von mises 应力最大值为 217.884 MPa。计算结果表明,在桁 架节点左右偏距 1 m范围内,结构受力满足顶推施 工受力要求。

3.2.2 主梁下弦杆腹板稳定性

根据主梁下弦杆腹板稳定性计算结果,工况3 时反力及弯矩最大,选取该工况对弦杆腹板稳定性 进行复核,结果见图 8、图 9。由图 8、图 9 可知:单 点最大支反力 F=17 820/2×1.1=9 801 kN,弯矩 M=2 100 kN•m,剪力 $F_v=557$ kN。

抄垫钢板接触长度为 750 mm,取最不利腹板 最薄厚度 28 mm、材质 Q345qD 进行计算,得到下 弦杆截面特性(见图 10)。绕 X 轴的截面边缘弹性 抵抗矩 $W_{x(F)} = 37\ 351\ 061\ mm^3$ 。

图 10 下弦杆截面特性(单位:mm)

弯曲压应力为:

 $\sigma = M/W = 2.1 \times 10^9/37$ 351 061=56.2 MPa

根据《钢结构设计标准》^[14],对于同时配置横向 和纵向加劲肋的腹板,其局部稳定性按下式验算:

$$\frac{\sigma}{\sigma_{\rm cr2}} + \left(\frac{\tau}{\tau_{\rm cr2}}\right)^2 + \left(\frac{\sigma_{\rm c}}{\sigma_{\rm c,cr2}}\right)^2 \leqslant 1 \tag{1}$$

式中: σ 为计算腹板区格内由平均弯矩产生的腹板 计算高度边缘的弯曲压应力, σ =56.2 MPa; τ 为计 算腹板区格内由平均剪力产生的腹板平均剪应力, $\tau = F_v/(h_w t_w) = 557 000/(2 \times 1 000 \times 28) =$ 9.9 MPa; h_w 为腹板高度; t_w 为腹板厚度; σ_c 为腹板 计算高度边缘的局部压应力, $\sigma_c = F/(t_w l_z) =$ 9 801 000/(2×28×890)=196.6 MPa; l_z 为集中载 荷在腹板计算高度上边缘的假定分布长度, $l_z = a +$ $5h_y + 2h_R = 750 + 5 \times 28 + 0 = 890 \text{ mm}; a$ 为载荷沿 梁跨度方向的支撑长度, $a = 750 \text{ mm}; h_y$ 为底板厚 度; h_R 为轨道高度; σ_{cr2} , τ_{cr2} , $\sigma_{c.cr2}$ 为各种应力单独作 用下的临界应力。

将各值代入式(1),得:

$$\frac{\sigma}{\sigma_{\rm cr2}} + \left(\frac{\tau}{\tau_{\rm cr2}}\right)^2 + \left(\frac{\sigma_{\rm c}}{\sigma_{\rm c.cr2}}\right)^2 = \frac{56.2}{295} + \left(\frac{9.9}{170}\right)^2 + \left(\frac{196.6}{295}\right)^2 = 0.65 < 1$$

计算结果表明,主梁下弦杆腹板局部稳定性满 足要求。

4 结论

(1)选取合适工况对节点自适应步履式顶推工 艺进行计算分析,找出最不利工况,得到临时墩最大 支反力为9801kN。

(2)根据传力路径、板材材质、荷载扩展原则, 选取腹板节点板作为反力作用板件,腹板下设置 750 mm×300 mm 抄垫钢板扩展荷载。支反力偏 距临界值为1 m。应将这两项参数作为超危工况专 项施工方案管理的关键参数并严格管控,保证顶推 的顺利实施。

参考文献:

- [1]《中国公路学报》编辑部.中国桥梁工程学术研究综述・2021[J].中国公路学报,2021,34(2):1-97.
- [2] 梁利文.单机1200t级超大吨位步履式顶推装置液压 系统研究[J].装备制造技术,2016(6):76-79+83.
- [3] 娄松,吴芳,江湧,等.大吨位钢桁梁步履式顶推滑移施

工力学行为分析[J].桥梁建设,2021,51(1):66-73.

- [4] 黄群广.上跨繁忙干线钢桁梁拖拉式顶推和步履式顶 推工艺比选[J].中国新技术新产品,2021(19):124-127.
- [5] 李兆峰,牛忠荣,方继,等.大型连续钢桁梁桥顶推施工 中关键节点力学分析研究[J].铁道学报,2021,43(4): 158-165.
- [6] 李兆峰,牛忠荣,丁仕洪,等.连续钢桁梁桥顶推施工过 程整体式节点受力性能试验研究[J].建筑结构学报, 2020,41(2):182-190.
- [7] 卢丽娟.循环托举式步履机钢梁顶推施工质量控制[J].建材与装饰,2019(17):245-246.
- [8] 张奉春.柔性高墩大跨度钢桁梁顶推施工技术研究[J]. 公路,2021,66(3):148-152.
- [9] 潘强,吕牧.变宽变纵坡曲线钢梁超长距连续顶推施工 关键技术[J].施工技术,2019,48(23):59-61.
- [10] 陈旭勇,汤杰,杨宏印,等.小循环步履式顶推钢桁梁 施工关键技术与控制[J].施工技术,2018,47(15): 139-142.
- [11] 武林.大跨度钢箱梁上跨铁路枢纽车站步履式顶推法 施工技术[J].工程技术研究,2019,4(11):38-39.
- [12] 曲富强,王立峰,张振伟.顶推法架设桥梁施工控制技 术分析与预测[J].山西建筑.2020,46(1):125-128.
- [13] 中华人民共和国住房和城乡建设部.建筑结构可靠性 设计统一标准:GB 50068—2018[S].北京:中国建筑 工业出版社,2018.
- [14] 中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社, 2017.

收稿日期:2022-04-26

(上接第105页)

- [6] XIA Q. CHENG Y Y, ZHANG J A, et al. In-service condition assessment of a long-span suspension bridge using temperature-induced strain data[J]. Journal of Bridge Engineering, 2017, 22(3):04016124.
- XIA Q, ZHANG J A, TIAN Y D, et al. Experimental study of thermal effects on a long-span suspension bridge[J].Journal of Bridge Engineering, 2017, 22(7): 04017034.1-04017034.9.
- [8] 陈科旭.自然环境下大跨度悬索桥空间温度场和温度 效应研究[D].天津:天津大学,2018.

- [9] 金耀,刘亮,韩飞杨,等.大跨度悬索桥温度效应监测与 理论分析[J].公路,2020,65(4):111-118.
- [10] 周伟,夏雪莲,胡铁山,等.悬索桥索股架设参数敏感 性分析[J].公路与汽运,2020(3):104-105+109.
- [11] 赖敏芝,周伟,罗明.悬索桥施工期间主索鞍顶推优化 方案研究[J].中外公路,2021,41(3):122-125.
- [12] 周伟,李修坤,罗明.高温下大跨悬索桥锚跨张拉力的 合理控制[J].公路与汽运,2021(5):100-102+110.

收稿日期:2022-05-05