DOI:10.20035/j.issn.1671-2668.2023.04.029

# 施工隧道多传感器融合定位方法研究\*

黎胜根,向宙,肖正航,崔昌

(中国铁建重工集团股份有限公司,湖南长沙 410100)

摘要:针对隧道环境线面几何特征少且里程方向退化问题,提出一种融合激光雷达、惯性测量单元(IMU)、轮速计、超宽带(UWB)等多传感器信息的误差状态卡尔曼滤波(ESKF)定位方法,并 根据隧道结构的特殊性提出隧道结构化点云地图生成方法;根据隧道施工台车点云模型及里程, 结合隧道设计数据生成隧道结构化点云地图,将雷达扫描点云与地图通过正态分布变换(NDT)算 法进行匹配;将点云匹配结果与其他传感器信息一起对 IMU 的 ESKF 递推方程进行观测更新,降 低定位系统非线性的影响。与 LOAM 定位方法进行对比分析,结果显示 ESKF 定位方法能解决 隧道环境几何特征少带来的前端匹配精度低的问题,且多传感器融合可降低里程方向定位误差, 提高系统整体定位精度。

关键词:隧道;激光雷达;多传感器融合;误差状态卡尔曼滤波(ESKF);正态分布变换(NDT)
 中图分类号:U452
 文献标志码:A
 文章编号:1671-2668(2023)04-0143-06

传统的主要依靠人力的隧道施工方式作业效率 低、事故率高,已无法满足现代化建设需求,少人化、 无人化的施工作业模式是未来隧道施工的发展方 向[1]。无人驾驶技术可实现车辆在无人操作情况下 从始发地到目标地,赋予隧道装备无人驾驶能力进 而实现隧道施工无人化目标。在隧道环境中实现无 人驾驶,最大难题是车辆在隧道中的定位。在城市 道路环境下,无人驾驶汽车的定位主要依靠全球导 航卫星系统(GNSS),然而隧道内为全球定位系 统(GPS)拒止环境,必须依靠室内定位方式获取位 置和姿态信息。隧道中常见定位方式主要是测量 RFDI(射频识别)、超宽带(UWB)、Zigbee 等信号的 到达时间或信号强度值,这些方式的定位精度受遮 挡及距离等环境影响过大,平均精度为亚米级[2]。 彭学军等采用 UWB 构建隧道定位系统实现人员定 位,但不足以用于隧道施工装备的自动驾驶[3]。多 传感器融合定位无疑是隧道环境高精度定位的最佳 选择。张辰东等采用惯性导航系统(SINS)与 RFID 进行组合定位,列车在隧道中高速运动状况下仍能 保持米级定位精度[4]。然而施工隧道环境复杂多 变,且自动驾驶施工装备定位级别要求高。激光雷 达在无人驾驶领域应用广泛,可快速获取精准、全面 的环境信息,在隧道环境中加入激光雷达信息可有 效提高定位精度。江勇等在类似于隧道的长直炉膛

中基于 LOAM 算法融合三维激光雷达、SINS、气压 计信息进行定位,定位误差可控制在 0.5 m 以内,证 明融合雷达信息可有效提高定位精度<sup>[5]</sup>。基于雷达 的定位研究是自动驾驶定位技术的研究热点,在 LOAM 提出后,许多研究者针对各种环境及硬件对 其进行了优化。为降低运算成本,文献[6]提出采用 两步法配准点云,减小建图量级并增加因子图优化, 将 LOAM 优化为轻便型的 LeGO-LOAM。文 献[7]提出 Livox-LOAM,它适用于 Livox 固态激光 雷达。基于 LOAM 的定位方法都避免不了根据扫 描点云提取线面特征,然而隧道形状为圆柱面,隧道 内可用的其他线面特征非常少,线面特征提取方法 不适用于隧道。文献[8]采用正态分布变换(NDT) 算法实现扫描点云与地图配准,该方法不依赖线面 特征,更适用于隧道环境。隧道环境属于退化环境, 仅依靠激光雷达信息无法确定车辆在里程方向上的 位置。针对施工隧道环境特殊性带来的定位难问 题,本文提出一种融合激光雷达、惯性测量单 元(IMU)、轮速计、UWB的施工隧道定位方法。

# 1 点云数据处理

#### 1.1 结构化隧道点云地图生成

1.1.1 隧道线位姿确定

隧道施工时,其设计数据已经完善,因此隧道中

\*基金项目:湖南省创新型省份建设专项经费资助(2019GK1010);中国铁建股份有限公司年度科研计划(2020-B21)

某一里程点的姿态是确定的,一般由平曲线与竖曲 线决定。已知隧道起始点的半径为 $R_o$ ,隧道结束点 的半径为 $R_o$ ,某一位置p的里程为l,采用四节点 Gauss-Legendre 公式逼近隧道线进行积分,则该点 的位姿为:

$$\begin{cases} x_{p} = x_{o} + \\ l \sum_{i=1}^{n} R_{i} \cos \left[ \alpha_{o} \pm \left( K_{o} l v_{i} + \frac{K_{oe} l^{2}}{2l_{s}} v_{i}^{2} \right) \right] \\ y_{p} = y_{o} + \\ l \sum_{i=1}^{n} R_{i} \sin \left[ \alpha_{o} \pm \left( K_{o} l v_{i} + \frac{K_{oe} l^{2}}{2l_{s}} v_{i}^{2} \right) \right] \end{cases}$$
(1)  
$$\alpha_{p} = \alpha_{o} \pm \left( K_{o} l + \frac{K_{oe} l^{2}}{2l_{s}} v_{i}^{2} \right) \\ z_{p} = \frac{x_{p}}{2m} \end{cases}$$

式中: $x_p, y_p, z_p, \alpha_p$ 为该点坐标及航向角度; $x_o, y_o, z_o, \alpha_o$ 为坐标及航向角度起始值; $R_i, v_i$ 为Gauss-Legendre的节点参数; $K_o, K_o, C$ 别为起始点曲率和起始点与终止点的曲率差; $l_s$ 为曲线总长;m为竖曲线抛物线系数。

由于隧道高程变化一般在千分之几,忽略俯仰 角及横滚角的变化,即可确定隧道线上某一确定点 的位姿。

## 1.1.2 地图生成

隧道施工中,可扫描获得的点云分为3种,分别 为隧道施工作业台车点云 p。、初期支护段隧道壁面 点云 pi、二次衬砌段点云 p。。通过台车里程推算台 车在隧道坐标系下位姿 T<sup>\*</sup>,结合隧道与地图坐标关 系 T<sup>\*\*</sup>,得到台车在地图坐标系下的点云 p<sup>\*\*</sup>。按同 样的方法可将初期支护段点云转化到地图坐标系 下。二次衬砌段轮廓和隧道设计轮廓非常接近,且二 次衬砌段里程—般最长,直接通过隧道设计数据生成 二次衬砌段点云并转化到地图坐标系下。按式(2)合 成以上3种点云即可获得隧道点云地图(见图1~6)。

$$b_{\rm c}^{\rm m} = T_{\rm s}^{\rm m} T_{\rm c}^{\rm s} p_{\rm c}$$







图 6 结构化生成的点云地图

#### 1.2 NDT 点云匹配

(2)

1.2.1 NDT 算法的基本原理

点云匹配方法分为两类,其中一种是通过扫描 点云的几何特征配准两帧点云,这种方法突出特征 点云的权重,过滤点云的其他非特征点,在几何特征 明显的环境中往往能表现出较好的匹配效果。但隧 道环境几何特征较少,因此采用另一种点云匹配方 法即全点云匹配方式。考虑到迭代最近点(ICP)算 法匹配效果受相对运动影响较大且受限于初值质 量,极有可能陷入局部优化,选择 NDT 算法匹配当 前帧扫描点云与地图点云,获得运动车辆在地图坐 标系下的位姿最佳估计值。

NDT 算法基于概率统计学原理,对于样本{ $x_k$ ; k=1,...,n},先将参考点云进行网格化,获得三维 空间中最小单元体素  $c_i$ ;然后按式(3)、式(4)计算 每个  $c_i$ 内的正态分布模型{ $N(\mu, \epsilon)$ }( $\mu$  为均值,  $\epsilon$  为标准差);将目标点云中每个点按照位姿投影到 参考点云的每个体素中,按式(5)计算每个点在每个 体素中的概率得分  $s_o$ 

$$\mu = \frac{1}{n} \sum_{k=1}^{n} x_k \tag{3}$$

$$\boldsymbol{\varepsilon} = \frac{1}{n-1} \sum_{k=1}^{n} (\boldsymbol{x}_k - \boldsymbol{\mu}) (\boldsymbol{x}_k - \boldsymbol{\mu})^{\mathrm{T}}$$
(4)

$$s = \frac{1}{\varepsilon} \exp\left[-\frac{(x-\mu)^{\mathrm{T}}\varepsilon^{-1}(x-\mu)}{2}\right]$$
(5)

待计算目标点在参考点云正态分布模型下的最 大似然估计为:

$$\psi = \prod_{j=1}^{m} f(T(p,x)) \tag{6}$$

式中:T(p,x)为转换函数;f为概率密度函数。

对优化目标取负对数,得:

$$-\lg\psi = -\sum_{k=1}^{n}\lg(f(T(p,x_k)))$$
(7)

忽略常数部分,优化目标为:

$$\min_{T} \sum_{j=1}^{m} \left( T(p, x_j) - \mu_j \right)^{\mathrm{T}} \varepsilon_j \left( T(p, x_j) - \mu_j \right)$$
(8)

采用最小二乘法求解优化目标即可得到匹配 结果。

1.2.2 扫描点云与隧道地图的 NDT 匹配

由于隧道点云地图需要消耗大量内存资源,将 地图进行分段处理,通过位姿初值及当前帧扫描点 云范围确定所选地图区域;将当前帧扫描点云插入 KD树(K-dimension Tree)中,遍历所有扫描点并找 到与每个扫描点距离最近的体素中心,确定扫描点 所在的体素编码;建立当前帧点云的 NDT 匹配优化 模型,扩展单点向量为点云空间向量,优化模型为:

$$\min_{T} (\mathbf{T}\mathbf{X} - U)^{\mathrm{T}} \mathbf{E} (\mathbf{T}\mathbf{X} - U)$$
(9)

式中:**T** 为转换矩阵;**X** 为当前帧所有点组成的三维 点云向量;**E** 为点云向量对应的协方差矩阵,又称信 息矩阵;**U** 为点云均值。

鉴于模型 F 函数对 T 的雅可比矩阵 J 与 E 均 为稀疏矩阵,可降低 Hessian 逆矩阵的求解难度,采

用 Levenberg-Marquardt 算法(L-M 法)求解模型的 最优匹配估计位姿(见图 7)。



图 7 当前帧点云与地图 NDT 匹配

## 2 ESKF 多传感器信息融合

#### 2.1 ESKF 递推模型优化

位姿估计是一个非线性系统,普通的卡尔曼滤 波(KF)只能对线性系统进行求解。扩展卡尔曼滤 波(EKF)将非线性系统通过一阶泰勒展开进行线 性化,忽略了二次项之后的估计值,会造成较大估计 误差。误差状态卡尔曼滤波(ESKF)算法将一个系 统的状态空间分为3种,分别为系统状态的真实值、 名义值即不考虑系统噪声的推算值、真实值与名义 值之差即误差值,系统的非线性程度集中于名义值, 相对而言,误差值的线性化程度高,对误差值进行卡 尔曼估计的准确性远高于直接对名义值进行估计, 通过误差值与名义值之和得到的系统物理状态值往 往具有更高的精度。

通过 IMU 航迹推算 ESKF 模型,变量名称及 符号见表 1。

表1 变量名称及符号

| 物理名称                     | 真实状态值                      | 名义状态值                   | 误差状态值              |
|--------------------------|----------------------------|-------------------------|--------------------|
| 状态空间 < R <sup>16</sup>   | $x_{t}$                    | x                       | $\delta_x$         |
| 位移 < R <sup>3</sup>      | S <sub>t</sub>             | 5                       | $\delta_s$         |
| 速度∈R <sup>3</sup>        | $v_t$                      | υ                       | $\delta_v$         |
| 姿态四元数 $\in \mathbf{R}^4$ | $q_{t}$                    | q                       | $\delta_{q}$       |
| 旋转矩阵∈SO(3)               | $R_{t}$                    | R                       | $\delta_R$         |
| 三轴角∈R <sup>3</sup>       | $\theta_{t}$               | θ                       | ${\delta}_{	heta}$ |
| 加速度计零 $\in \mathbf{R}^3$ | $a_{bt}$                   | $a_b$                   | $\delta_{a_b}$     |
| 陀螺仪零偏∈R³                 | $\boldsymbol{\omega}_{bt}$ | $\boldsymbol{\omega}_b$ | $\delta_{{}^_b}$   |
|                          |                            |                         |                    |

注:R代表实数;SO(3)表示李群中的三维旋转群。

IMU 的真实值连续状态方程为:  

$$\begin{cases}
s'_{t} = v_{t} \\
v'_{t} = R_{t}(a_{m} - a_{bt} - a_{n}) + g_{t} \\
q'_{t} = \frac{1}{2}q_{t} \otimes (\omega_{m} - \omega_{bt} - \omega_{n}) \\
a'_{bt} = a_{\omega} \\
\omega'_{bt} = \omega_{\omega}
\end{cases}$$
(10)

式中: $a_m$ 为加速度测量值;g为重力加速度; $\omega_m$ 为角 速度测量值; $a_n$ 为加速度测量误差; $\omega_n$ 为角速度测 量误差; $\otimes$ 代表四元数乘法; $a_\omega$ 为加速度计零偏; $\omega_\omega$ 为陀螺仪零偏。

名义值的状态方程忽略了噪声及零偏方向的影响,其形式为:

$$\begin{cases} s' = v \\ v'' = R(a_m - a_b) + g \\ q'' = \frac{1}{2} q \otimes (\omega_m - \omega_b) \\ a'_b = 0 \\ \omega'_b = 0 \end{cases}$$
(11)

误差状态值为真实值与名义值的差值,其形 式为:

$$\begin{cases} \delta'_{s} = \delta_{v} \\ \delta'_{v} = R (a_{m} - a_{b})^{\wedge} \delta_{\theta} - R \delta_{\theta} a_{b} - R a_{n} \\ \delta'_{\theta} = -(\omega_{m} - \omega_{b})^{\wedge} \delta_{\theta} - \delta_{\omega_{b}} - \omega_{n} \\ \delta'_{ab} = a_{\omega} \\ \delta'_{ab} = \omega_{\omega} \end{cases}$$
(12)

将连续状态离散化,则名义状态值的状态方 程为:

$$\begin{cases} s_{k+1} = s_k + v_k \Delta t + \frac{1}{2} [R_k (a_{mk} - a_{bk}) + g] \Delta t^2 \\ v_{k+1} = v_k + [R_k (a_{mk} - a_{bk}) + g] \Delta t \\ q_k = q_k \bigotimes q_k [(\omega_{mk} - \omega_{bk}) \Delta t] \\ a_{b(k+1)} = a_{bk} \end{cases}$$
(13)

$$\omega_{b(k+1)} = \omega_{bk}$$

误差状态值的离散状态方程为:

$$\begin{cases} \delta_{s_{k+1}} = \delta_{s_k} + \delta_{v_k} \Delta t \\ \delta_{v_{k+1}} = [-R_k (a_{mk} - a_{bk})^{\wedge} \delta_{\theta_k} - R_k \delta_{\theta} a_{bk}] \Delta t + \\ \delta_{v_k} - w_{v_k} \end{cases} \\ \delta_{\theta_{k+1}} = R_k^{\mathsf{T}} [(\omega_{mk} - \omega_{bk}) \Delta t] \delta_{\theta_k} - \delta_{\omega_{bk}} \Delta t - w_{\theta k} \\ \delta_{a'_{b(k+1)}} = \delta_{a_{bk}} + w_{ak} \\ \delta_{\omega'_{b(k+1)}} = \delta_{\omega_{bk}} + w_{\omega k} \end{cases}$$

$$(14)$$

式中:k 表示离散时刻;w<sub>w</sub>,w<sub>w</sub>,w<sub>w</sub>,w<sub>w</sub>分别表示 加速度与角速度系统噪声导致的速度误差分量、姿 态误差分量、加速度计零偏误差分量、陀螺仪零偏误 差分量,其协方差矩阵表示为:

$$W_{V} = \sigma_{a_{n}}^{2} \Delta t^{2} I$$
$$W_{\Theta} = \sigma_{\omega_{n}}^{2} \Delta t^{2} I$$
$$W_{A} = \sigma_{a_{\omega}}^{2} \Delta t I$$
$$W_{\Theta} = \sigma_{a_{\omega}}^{2} \Delta t I$$

式中:I为单位向量。

令: $x_{k} = [s_{k}, v_{k}, q_{k}, a_{bk}, \omega_{bk}], \delta_{xk} = [\delta_{s_{k}}, \delta_{v_{k}}, \delta_{q_{k}}, \delta_{a_{bk}}, \delta_{\omega_{bk}}], u_{mk} = [a_{mk}, \omega_{mk}], w_{k} = [w_{vk}, w_{\theta k}, w_{ak}, w_{\omega k}], 得到名义状态变量的递推方程:$ 

$$x_{k+1} = f(x_k, u_{mk}) \tag{15}$$

将误差状态方程进行卡尔曼滤波的线性化,获 得误差状态值的一阶泰勒展开线性化近似值递推 方程:

$$\delta_{x_{k+1}} = f_{\delta}(x_k, \delta_{x_k}, u_{mk}, w_k) \approx \mathbf{F}_{x_k}(x_k, u_{mk}) \delta_{x_k} + \mathbf{F}_{w_k} w_k$$
(16)

式中:**F**<sub>xk</sub>、**F**<sub>wk</sub>为误差传递函数对误差状态和噪声的雅可比矩阵。

误差状态值的卡尔曼滤波状态及协方差方 程为:

$$\delta_{x_{k+1}}^{\cdot} = \boldsymbol{F}_{Xk}(x_k, u_{mk}) \delta_{x_k}^{\cdot}$$

模型的雅可比矩阵及噪声协方差为:

$$\mathbf{F}_{Xk} = \begin{bmatrix} \mathbf{I} \Delta t & 0 & 0 & 0 \\ \mathbf{I} & -\mathbf{R}_{k} (a_{mk} - a_{bk})^{\wedge} \Delta t & -\mathbf{R}_{k} \Delta t & 0 \\ 0 & 0 & \mathbf{R}_{k} (a_{mk} - a_{bk}) \Delta t & 0 & -\mathbf{I} \Delta t \\ 0 & 0 & 0 & \mathbf{I} & 0 \\ 0 & 0 & 0 & \mathbf{I} & 0 \\ 0 & 0 & 0 & \mathbf{I} \end{bmatrix}$$
$$\mathbf{F}_{Wk} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ \mathbf{I} & 0 & 0 & 0 \\ 0 & \mathbf{I} & 0 & 0 \\ 0 & 0 & \mathbf{I} & 0 \\ 0 & 0 & \mathbf{I} \end{bmatrix}$$
$$\mathbf{Q}_{W} = \begin{bmatrix} \mathbf{W}_{V} & 0 & 0 & 0 \\ 0 & \mathbf{W}_{\Theta} & 0 & 0 \\ 0 & \mathbf{W}_{\Theta} & 0 & 0 \\ 0 & 0 & \mathbf{W}_{A} & 0 \\ 0 & 0 & 0 & \mathbf{W}_{A} \end{bmatrix}$$

#### 2.2 多传感器信息观测更新

自动驾驶中一般使用低精度的 MENS 惯性测 量单元,其零漂及精度决定仅依靠惯性测量单元进 行定位极不准确,必须加入其他传感器信息对惯性 测量单元的预测估计值进行优化来提高定位精度。 为此,在定位系统中加入激光雷达、轮速计、UWB 3 种传感器信息作为观测对 ESKF 预测进行优化。 考虑到隧道环境在里程方向的退化及轮速计受轮胎 打滑的影响,加入 UWB 进行约束。

激光雷达 z<sup>4</sup> 通过 NDT 匹配对位姿进行估计,轮 速计 z<sup>\*</sup>对车辆前进方向速度进行估计,UWB 获得基 站与车体安装标签 m 之间的距离 z<sup>4</sup>,则观测方程为:

$$\begin{cases} z_k^{\prime} = \begin{bmatrix} s_k + R_k \Delta p_l \\ R_k \end{bmatrix} \\ z_k^{\nu} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\mathrm{T}} v_k \end{cases}$$
(18)

 $\left[z_{k}^{d}=(R_{k}\Delta p_{m}+s_{k}-u)^{\mathrm{T}}(R_{k}\Delta p_{m}+s_{k}-u)\right]$ 

式中: $\Delta p_{\iota}, \Delta p_{m}$ 分别为雷达和 UWB 标签到惯性测量单元坐标系的杆臂长;u 为 UWB 基站在全局坐标系中的位置。

定位递推方程为:

$$z_k = h(x_k) + w_{zk} \tag{19}$$

式中:z<sub>k</sub>为观测值;h 为观测函数;w<sub>zk</sub>为测量白噪声。

将式(19)根据递推方程进行线性化,得到观测 对误差状态值的雅可比矩阵 H<sub>k</sub>,则卡尔曼滤波后 验更新为:

$$\begin{cases} K_{k} = \mathbf{P}_{k}^{-} \mathbf{H}_{k}^{\mathrm{T}} (H_{k} \mathbf{P}_{k}^{-} \mathbf{H}_{k}^{\mathrm{T}} + V_{k})^{-1} \\ \delta_{x_{k}} = K_{k} (z_{k} - h(\hat{x}_{k})) \\ \mathbf{P}_{k} = (\mathbf{I} - K_{k} \mathbf{H}_{k}) \mathbf{P}_{k}^{-} \end{cases}$$
(20)

通过链式法则对误差状态值求一阶雅可比矩 阵,其值为:

$$\boldsymbol{H} = \frac{\partial h}{\partial x_t} \frac{\partial x_t}{\partial \delta_{x_t}} = \boldsymbol{H}_{X} A_{\delta}$$

式中: $H_X$ 见式(21); $H_V = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ ; $A_{\delta x}$ 为名义值 对误差状态值的雅可比矩阵[见式(22)]。

$$H_X =$$

$$\begin{bmatrix} \mathbf{I} & 0 & -R_{k} \Delta p_{i}^{2} & 0 & 0 \\ 0 & \mathbf{H}_{V} & 0 & 0 & 0 \\ 2(R_{k} \Delta p_{m})^{\mathrm{T}} + & 2(s_{k} - u)^{\mathrm{T}} \cdot \\ 2s_{k}^{\mathrm{T}} - 2u^{\mathrm{T}} & 0 & (-R_{k} \Delta p_{m}^{2}) \\ z_{k}^{\mathrm{T}} - 2u^{\mathrm{T}} & 0 & (-R_{k} \Delta p_{m}^{2}) \\ \mathbf{A}_{\delta x} = \frac{1}{2} \begin{bmatrix} -q_{x} & -q_{y} & -q_{z} \\ q_{w} & -q_{z} & q_{y} \\ q_{z} & q_{w} & -q_{x} \\ -q_{y} & q_{x} & q_{w} \end{bmatrix}$$
(21)

真实估计值为:

$$\hat{x}_{k} = \hat{x}_{k}^{-} \bigoplus \delta_{\hat{x}_{k}}$$
(23)

式中:⊕为姿态更新符号。

更新后将误差状态值及误差协方差进行复位, 用于下一次迭代。

## 3 试验结果分析

在宜昌市老林岗隧道进行试验。该隧道进深约为700m,隧道场景见图8,具备所有施工隧道应有的环境要素。试验平台为一台自动驾驶底盘,在移动平台上搭载禾塞 Pandar QT 机械式激光雷达及 Livox-Horizon 固态激光雷达、GNSS、北微 AH400 惯性测量单元,移动平台自带轮速计输出实时速度(见图9)。在隧道壁布置清研讯科 UWB 基站, UWB 标签安装在平台上。



图 8 隧道场景



图 9 试验平台

将平台前轴中心作为车体坐标系原点、前进方 向作为坐标系 X 轴正方向、向上作为 Z 轴正方向、 向左作为 Y 轴正方向,采用徕卡全站仪对各传感器 进行标定。确定地图原点,通过已知隧道坐标点与 GNSS 输出坐标点标定隧道坐标系与地图坐标系的 关系。采集平台按预定路径从隧道入口驶入掌子面 过程中的定位数据,采用 LOAM 定位方法与 ESKF 融合定位方法进行对比分析,输出频率为 10 Hz。 试验结果见图 10~14 和表 2。



图 14 两种方法在 Z 向的定位误差

表 2 两种方法定位误差对比

| 项目    | 定位方法      | 平均值/m   | 最大值/m   |
|-------|-----------|---------|---------|
| X 向误差 | LOAM 定位   | 0.274 8 | 0.811 9 |
|       | ESKF 融合定位 | 0.034 8 | 0.158 2 |
| Y向误差  | LOAM 定位   | 0.057 6 | 0.601 9 |
|       | ESKF 融合定位 | 0.010 6 | 0.108 3 |
| Z向误差  | LOAM 定位   | 0.038 8 | 0.361 4 |
|       | ESKF 融合定位 | 0.007 3 | 0.067 0 |

由图 10、图 11 可知:LOAM 方法在隧道径向的 定位效果较好,但扫描点云中存在横洞而地图中没 有,说明里程方向存在较大误差。

由图 12~14 和表 2 可知:采用 LOAM 方法进 行定位,Y向、Z向误差大部分在 0.1 m 以上,受里 程方向退化环境的影响,X 方向定位误差最大达 0.811 9 m,隧道施工中采用这种定位方法存在极大 风险;采用 ESKF 传感器融合定位方法进行定位, Y向、Z向误差降低至厘米级,X 方向定位误差相 较于 LOAM 方法也极大降低,最大定位误差下降 到 0.158 2 m,满足隧道施工使用要求。LOAM 方 法定位精度低的原因是隧道线面特征少,且受退化 环境的影响。ESKF 传感器融合定位方法通过 NDT 匹配获取点云和地图匹配结果,提高了前端处 理精度,并通过 UWB 和轮速计约束里程方向位置, 融合后定位精度比任意单一传感器的定位精度都 高,且相比于普通 EKF 算法,采用 ESKF 算法能有 效降低系统非线性对定位精度的影响。

## 4 结语

本文针对施工隧道圆拱形轮廓环境线面特征少 及里程方向退化无法定位的问题,设计一种施工隧 道多传感器融合定位方法。采用根据扫描台车点云 模型和隧道设计数据及里程生成结构化地图的方 法,根据生成的地图与雷达扫描点云进行 NDT 匹 配,解决隧道环境线面特征少带来的前端匹配精度 低的问题;将多种传感器信息通过 ESKF 算法进行 融合,解决隧道环境特征退化导致里程方向定位精 度差的问题;对误差值进行滤波,降低定位系统非线 性误差。试验验证结果表明,多传感器融合定位方 法适用于施工隧道定位,其定位精度可满足施工隧 道使用要求。

#### (下转第152页)

法。编写基于 Revit 平台的二次开发插件,实现对 桥梁病害记录时间、病害种类、ID、受损等级等病害 信息的查询;将病害引入桥梁实体模型,以病害的记 录时间为维度建立桥梁病害族,将历史、受损程度加 深、新增病害以不同图元形式展示在桥梁三维可视 化模型中,实现桥梁病害与实体模型在时间节点上 的动态关联;建立基于 Revit 平台的桥梁病害数据 库,添加病害的局部受损图片,将每次巡查记录的不 同类型病害信息数据通过 Revit 传入数据库中,确 保桥梁病害信息的更新与数据的完整性。

## 参考文献:

- GIRARDET A, BOTON C.A parametric BIM approach to foster bridge project design and analysis [J]. Automation in Construction, 2021, 126:103679.
- [2] MOSHYNSKYI V, STRILETSKYI P, TRACH R. Application of the building information modelling(BIM) for bridge structures[J]. Acta Scientiarum Polonorum-Architectura Budownictwo, 2022, 20 (4): 3-9.
- [3] MOON H S,KIM H S,KANG L S,Development strategies and feasibility evaluation of maintenance operation system for railway bridge based on ubiquitous-BIM technology[J]. Journal of the Korean Society for Railway,2012,15(5):459-466.

- [4] 李沅璋,赵月悦.福厦铁路泉州湾特大桥工程 BIM 技术应用研究[J].铁路技术创新,2019(4):126-128.
- [5] 高增奎.BIM 技术在南昌港口大道Ⅲ标市政桥梁施工 中的应用[J].铁路技术创新,2017(1):75-78.
- [6] 李成涛,章世祥.基于 BIM 技术的桥梁病害信息三维 可视化研究[J].公路,2017,62(1):76-80.
- [7] Autodesk Asia Pte Ltd. Autodesk Revit 二次开发基础 教程[M].上海:同济大学出版社,2015.
- [8] 周文哲,刘晓平,游涛,等.BIM 技术在混凝土施工温控 监测中的应用研究[J].交通科学与工程,2023,39(1): 76-82.
- [9] 施博文,许红胜,颜东煌,等.BIM 正向设计中建模与 分析软件间信息传递研究[J].公路与汽运,2023(3): 136-140.
- [10] 卫星,邹建豪,肖林,等.基于 BIM 的钢桁梁桥裂纹病 害信息数字化管理[J].西南交通大学学报,2021, 56(3):461-468+492.
- [11] 杨洋,何飞,李洁.公路桥梁病害分类与编码构建方 法[J].北方交通,2020(11):28-31+36.
- [12] 钟辉,李驰,孙红,等.面向 BIM 模型二次开发数据提 取与应用技术[J].沈阳建筑大学学报(自然科学版), 2019,35(3):560-566.
- [13] 吴焜.基于 BIM 的桥梁检测信息管理与智能评估系 统[D].厦门:厦门大学,2018.

收稿日期:2022-11-16

## 参考文献:

- [1] 王志坚.郑万高铁隧道智能化建造技术研究及展望[J]. 隧道建设(中英文),2021,41(11):1877-1890.
- [2] 马二顺,李金昆,修春娣,等.隧道定位方法综述[C]// 中国高科技产业化研究会智能信息处理产业化分会. 第十五届全国信号和智能信息处理与应用学术会议论 文集.北京:中国高科技产业化研究会智能信息处理产 业化分会,2022:186-190.
- [3] 彭学军,刘云龙,罗运杰,等.基于 UWB 的隧道高精度 定位系统研究[J].公路与汽运,2021(1):137-139.
- [4] 张辰东, 王兆瑞, 金声震, 等. 基于 SINS/RFID 的隧道 列车高精度定位方法[J]. 北京航空航天大学学报, 2022, 48(4):632-638.
- [5] 汪勇,华志刚,陈建国,等.锅炉密闭空间无人机定位导 航系统设计[J].动力工程学报,2021,41(11):966-971.

- [6] SHAN T X, ENGLOT B. LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain[C] // Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2018:4758-4765.
- [7] LIN J R, ZHANG F. Loam livox: A fast, robust, highprecision LiDAR odometry and mapping package for LiDARs of small FoV[C]// Proceedings of 2020 IEEE International Conference on Robotics and Automation(ICRA).IEEE, 2020;3126-3131.
- [8] KOIDE K, JUN M, EMANUELE M. A portable 3D LIDAR-based system for long-term and wide-area people behavior measurement[J]. International Journal of Advanced Robotic Systems, 2019, 16(2):1-16.

收稿日期:2022-03-07