基于深度神经网络的道路多目标检测方法研究
DOI:
CSTR:
作者:
作者单位:

1.长安大学汽车学院;2.长安大学长安都柏林国际交通学院

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省重点研发计划项目(编号:2024CY2-GJHX-70);中央高校基金项目(编号:300102223203)


Research on roadway multi-target detection method based on deep neural network
Author:
Affiliation:

1.School of Automobile, Chang’an University;2.Chang'3.'4.an Dublin International College of Transportation, Chang’an University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决现有道路目标检测算法存在检测精度低、目标ID切换频繁和终端部署受限等问题,提出一种基于深度神经网络的道路多目标检测算法。检测阶段,在YOLOv5s主干网络融入Ghost卷积减少计算量,引入SimAM(Simple Attention Module)注意力机制提升复杂环境中小目标的感知能力,采用Focal EIoU损失函数替换原网络中的CIoU提升收敛速度,并采用柔性非极大值抑制(Soft Non-Maximum Suppression,Soft-NMS)替换传统非极大值抑制(NMS)解决目标遮挡与漏检问题,最后通过LabelImg自建本地车辆-行人检测数据集来训练网络,提高模型的泛化能力。将优化模型部署到Jetson Nano开发板并搭载实车进行验证,结果表明:改进后的YOLOv5s在参数量减少47.4%的基础上,mAP50提高了2.7%,处理速度提升了8.3%。该研究结果可为智能驾驶车辆的多目标跟踪提供参考。

    Abstract:

    In order to solve the problems of low detection accuracy, frequent target ID switching and limited terminal deployment of existing road target detection algorithms, a deep neural network-based road multi-target detection algorithm is proposed. In the detection stage, Ghost convolution is integrated into YOLOv5s backbone network to reduce the computational volume, SimAM (Simple Attention Module) attention mechanism is introduced to improve the perception of small targets in complex environments, Focal EIoU loss function is used to replace CIoU in the original network to improve the convergence speed, and Soft Non-Maximum Suppression ( Soft Non-Maximum Suppression (Soft-NMS) is used to replace the traditional Non-Maximum Suppression (NMS) to solve the problem of target occlusion and missed detection, and finally, the local vehicle-pedestrian detection dataset is self-constructed by LabelImg to train the network and improve the generalization ability of the model. The optimized model is deployed to the Jetson Nano development board and equipped with a real vehicle for validation, and the results show that the improved YOLOv5s improves the mAP50 by 2.7% and the processing speed by 8.3% based on a 47.4% reduction in the amount of parameters. The results of this study can provide a reference for multi-target tracking of intelligent driving vehicles.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-18
  • 最后修改日期:2025-03-09
  • 录用日期:2025-03-10
  • 在线发布日期:
  • 出版日期:
文章二维码