基于GRU神经网络的软土地区公路路基沉降预测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U416.1

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用门控递归单元(GRU)神经网络生成预测模型,依据Nesterov-accelerated Adam(Nadam)算法学习软土地区公路路基沉降数据的演变规律,采用沉降监测历史数据和实时数据进行训练,并在训练结束后再次分析实时监测数据,预测下一阶段的沉降变形;结合湖南某高速公路工程路基沉降数据,利用该模型对软土地区高速公路路基不均匀沉降进行预测,并与沉降实测值进行对比,分析预测模型的准确性和可靠性。结果表明,模型预测值与路基沉降实测值相吻合,基于GRU的路基沉降预测方法可靠。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

刘晓剑,金可云,温勇兵.基于GRU神经网络的软土地区公路路基沉降预测方法[J].公路与汽运,2023,(2):62-67.[J].,2023,(2):62-67.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-04-13
  • 出版日期: