摘要:受反复的交通荷载、温度变化、风载等的影响,钢桥桥面铺装的应力状态复杂,加上柔性的桥面铺装与刚性钢桥结构力学相容性问题,钢桥桥面铺装易出现早期病害。为了识别、分类和量化钢桥桥面铺装典型病害,文中提出一种基于深度摄像头KinectV2和深度学习的桥面铺装病害识别方法。先通过传感器采集桥面铺装病害图像,创建带标识的数据库,并将其转化为训练集,然后利用YOLOv5对训练集的原始数据进行训练、验证与测试,获得桥面铺装病害识别、分类和量化结果。结果表明,基于深度学习,利用随机采样一致性(RANSAC)可以实现RGBD 传感器在不同工作距离上的平面拟合,达到对桥面铺装病害的高效识别,各类病害的识别误差均可控制在10%以内;与人工识别方法相比,利用简单图像采集设备和机器学习的智能识别方法能以较低的成本在不影响交通的条件下完成钢桥桥面铺装病害识别与量化,计算效率更高,可大大节省人工和时间成本,且能保证识别结果在一定精度范围内。