基于Mask R-CNN的港区路面病害识别研究
DOI:
作者:
作者单位:

1.天津津港建设有限公司,长沙理工大学;2.天津津港建设有限公司;3.长沙理工大学

作者简介:

通讯作者:

中图分类号:

U418.6

基金项目:

湖南省自然(2022JJ50324),国家自然科学基金面上项目(52078058)


Research on Port Area Road Surface Defect Recognition Based on Mask R-CNN
Author:
Affiliation:

1.Tianjin Jingang Construction Company Limited,Tianjin Binhai;2.School of Civil Engineering,Changsha University of Science Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    港区路面重载车辆较多病害频发,传统检测方法无法应对大范围、高频次的道路检测任务,病害无法同时进行定位与精细化分割等问题,本文提出了一种基于Mask R-CNN路面病害识别的方法。首先构建了包含13005张高清图像和对应像素标注信息的大规模路面数据集,采用ResNet-101与FPN作为特征提取模块,并结合RPN、RoI Align与掩模分支模块对病害进行快速精准识别与像素级分割。模型识别横向裂缝、纵向裂缝、横向修补、纵向修补这4种病害的平均精度为87.4%,平均召回率为88.6%,平均F1-Score为0.880,同时在交并比(IoU)阈值为0.5的条件下,模型的mAP_50为88.1%。在港区道路上的实际应用测试中,配套软件的mAP_50为85.4%,且生成的掩模边界清晰。以上结果表明,本研究所提出的方法有效降低了病害检测和评估的技术难度,提高了道路养护效率和评估的客观性,增强了港区道路交通巡检的智能化水平。

    Abstract:

    In response to the frequent occurrence of road surface diseases in port areas and the inadequacy of traditional detection methods to cope with large-scale and high-frequency road inspection tasks, as well as the inability to simultaneously locate and finely segment diseases, this paper proposes a road disease recognition method based on Mask R-CNN. Firstly, a large-scale road dataset containing 13005 high-definition images and corresponding pixel annotation information is constructed. ResNet-101 and FPN are adopted as the feature extraction modules, combined with RPN, RoI Align, and mask branch modules for rapid and accurate disease recognition and pixel-level segmentation. The model achieved an average precision of 87.4%, an average recall of 88.6%, and an average F1-Score of 0.880 in identifying four types of pavement distress: transverse cracks, longitudinal cracks, transverse repairs, and longitudinal repairs. Additionally, under the condition of an Intersection over Union (IoU) threshold of 0.5, the model"s mAP_50 reached 88.1%. In practical application tests on port area roads, the associated software demonstrated an mAP_50 of 85.4%, with clear boundaries generated for the masks. These results indicate that the proposed method effectively reduces the technical difficulty of distress detection and assessment, enhances the efficiency and objectivity of road maintenance evaluations, and improves the level of intelligence in traffic inspections of port area roads.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-06
  • 最后修改日期:2024-09-06
  • 录用日期:2024-09-24
  • 在线发布日期:
  • 出版日期: